Nature Environment and Pollution Technology
Vol. 14, No. (4), December 2015

CONTENTS

1. Dongqing Fan, Shugao Qin, Yuqing Zhang, Bin Wu, Hao Gao, Dong Chen, Jiachen Zhang and Linfeng Zhu, Effects of sand-fixing vegetation on topsoil properties in the Mu Us desert, Northwest China 749-756

2. Chunlin Yang, Ruiping Guo, Xiujuan Ren, Qingling Yue, Bingli Wang, Xihuan Zhang, Anbang Zhang, Dafu Wu, Dongfang Li, Yongzhao Liu, Yanling Guo and Ying Zhang, Spatial pattern and environmental quality assessment of potentially toxic elements in soils of central agricultural areas, China 757-762

3. Lifeng Pang, Junliang and Yuanchang Lu, Managing multi-functional forests using forest development types (FDTs) - A perspective from monoculture forests in southern subtropical China 763-770

4. K. Ilayaraja and A. Ambica, Spatial distribution of groundwater quality between Injambakkam-Thiruvanmyur areas, south east coast of India 771-776

5. Hongjie Wang, Jianen Gao, Hong Wang and Li Liu, Impact of soil and water conservation measures on runoff and sediment environment in Wei river basin 777-784

8. Wang Wei-zhuo, Bian Jian-min and Lu Wenxi, A model for assessing water purification capacity of algae to eutrophication at large-scale 799-804

10. Yong Liang, Ling Qiu, Junting Pan and Wen Lu, Research of interpolation and prediction by Elman NN on anaerobic digestion processes parameter 811-816

11. Sukanchan Palit, Microfiltration, groundwater remediation and environmental engineering science - A scientific perspective and a far-reaching review 817-825

13. Li Yang and Feng Qian, Wind environment in green building design 833-838

16. Shuquan An, Xiufan Xie and Ying Ma, Evaluation of water quality using principal component analysis 855-858

17. Muqing Qiu, Yanan Xuan, Peichao Luo, Zebin Wang and Jianxin Shou, Adsorption of methylene blue by activated carbon from capsicum straw 859-864

18. Guoting Li, Yanmin Feng, Xiaozhi Chai and Xiaoshuang He, Equilibrium and thermodynamic studies for adsorption of 1,4-benzoquinone by fly ash 865-869

20. Mahendra Prasad and Priyankar Raha, Nitrate pollution in the groundwater of different cropping systems of Varanasi district, Uttar Pradesh, India 877-880

21. Xinli Lu, Chun Hai Zhao, Aijun Zhao, Yuqi Zhang, Yichun Wu, Suliang Chen and Xiaohui Liang, Decolorization of leather dyeing wastewater by laccase of the white rot fungus Pycnoporus sp. Y1 881-884

22. Yingbo Dong and Hai Lin, Oxidation of reduced inorganic sulphuric compounds in simulated desulphurization wastewater by Thiothioporus thioparus 885-890
23. Jayanthi Ganesan and Vasudevan Namasivayam, Performance evaluation of sewage treatment plants (STPs) in multistoried buildings 891-896
24. A. M. Shivanna and G. Nagendrappa, Correlation matrix of physico-chemical characteristics of select tank waters of Tiptur taluk in Tumkur district, Karnataka 897-902
25. C. Rajakumar and T. Meenambal, Experimental study of bagasse ash utilisation for road application on expansive soil 903-908
26. Yali Yu, Xunchi Pu, Ran Li, Hong Jiang and Yong Li, A study on the quantitative measurement method of organoleptic chromaticity for sandy water 909-914
27. Jihong Zhou, Qi Jiang, Yamin Wen and Ronghe Liang, Research on H2S removal by the ferric oxide process 915-918
29. B. V. G. Prasad and S. Chakravorty, Effects of climate change on vegetable cultivation - A review 923-929
30. Hao Guo, Jie Tang, Dong Wang, Furong Chen and Lianlian Lin, Effects of FDI on environment pollution based on carbon dioxide emissions in the Pearl river delta region 931-936
31. Gopal Chandra Ghosh, Sayka Jahan, Basabi Chakraborty and Asma Akter, Potential of household rainwater harvesting for drinking water supply in hazard prone coastal area of Bangladesh 937-942
32. B. S. Giriyappanavar and P. B. Shivalli, Pollution monitoring by algae in a sacred water body of Belgaum district 943-946
34. Soumen Pal and Debasis Mazumdar, Stochastic modelling of monthly rainfall volume during monsoon season over Gangetic West Bengal, India 951-956
35. Minshen Huang, Qing Li, Tongchao Le and Fanglin Tan, Foliar carbon isotope discrimination and water sources of mangrove forests along natural soil salinity gradients and implications for their distribution pattern 957-962
36. G. K. Arunvivek, G. Maheswaran and S. Senthil Kumar, Eco-friendly solution to mitigate the toxic effects of hazardous construction industry waste by reusing in concrete for pollution control 963-966
37. Xinlong An, Xuemei Li, Zhi Xia Li and Yanling Zhang, Growth characteristics of Platymonas subcordiformis and Oxyrrhis marina in their co-culture systems 967-972
38. Leila Sepahvand, Application of D numbers to the environmental impact assessment of highway 973-978
39. Sinu J. Varghese and M. T. P. Miranda, Macrowebe communities in the bottom sediment of Arthunkal coast in Kerala, southwest coast of India 979-984
40. M. Khaleghi and M. Hashemi-Tilehnoee, Evaluating the radiation risk of ionization smoke detector by MCNPX code: A radioactive contaminated product 985-988
41. Fanbin Meng, Haifu Li, Fangli Su and Tieliang Wang, Analyses of diversion water input’s influence on water quality of Dahuofang reservoir 989-993
42. Zhijian Zhang, Cheng Zhang, Yaping Feng and Ningyuan Wu, Strategies for the decoupling effect of carbon emission and low carbon in the logistics industry of Jiangxi province: From the perspective of environmental protection 995-1002
43. Wei Zhang, Jianfeng Xia, Yalin Li, Mingqiang Yao, Sergei Sidorov and Shiyuan Gan, Water pollution and relevant preventive measures in the Hechuan segment of Fujiang River 1003-1010
44. Honggang Zhao and Ruixin Lao, Change in water consumption and its effect on the land cover of the Oasis in the Tarim River basin, Xinjiang, China 1011-1018
45. Zhenshan Wang, Shaoliang Zhang, Xuefei Wang and Yongjun Yang, Evaluation of environmental purification service for urban green space in Nanjing 1019-1025
44. Conferences/Symposia 826
45. Environmental News 854, 870, 930
46. Environmental Days to celebrate in 2016 994
The Journal is Currently Abstracted and Indexed in:

- Zetoc
- J-Gate
- Centre for Research Libraries
- Connect Journals (India)
- Research Bible (Japan)
- Elektronische Zeitschriftenbibliothek (EZB)
- CNKI Scholar (China National Knowledge Infrastructure)
- AGRIS (UN-FAO)
- Scopus®, SJR (0.138)
- El Compendex of Elsevier
- Chemical Abstracts, U.S.A.
- Pollution Abstracts, U.S.A.
- Paryavaran Abstract, New Delhi, India
- Electronic Social and Science Citation Index (ESSCI)
- Google Scholar
- Environment Abstract, U.S.A.
- WorldCat (OCLC)
- CSA: Environmental Sciences and Pollution Management
- Indian Science
- SHERPA/RoMEO
- JournalSeek
- Access to Global Online Research in Agriculture (AGORA)

Abstracts and full papers are available on the Journal’s Website: www.neptjournal.com

SUBSCRIPTION RATES (w.e.f. 2016)

<table>
<thead>
<tr>
<th>Print/Online</th>
<th>India</th>
<th>Nepal/Pakistan/Bhutan/Bangladesh/Srilanka</th>
<th>Rest of the World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only Print Copy</td>
<td>Rs. 3500</td>
<td>US $200</td>
<td>US $400</td>
</tr>
<tr>
<td>Only Online Copy</td>
<td>Rs. 2500</td>
<td>US $150</td>
<td>US $300</td>
</tr>
<tr>
<td>Print + Online Copy</td>
<td>Rs. 4500</td>
<td>US $300</td>
<td>US $550</td>
</tr>
</tbody>
</table>

* There is no separate rate for individuals/authors.

ADVERTISEMET RATES

<table>
<thead>
<tr>
<th>Package</th>
<th>1 Issue</th>
<th>2 Issues</th>
<th>4 Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Page</td>
<td>Rs. 5000</td>
<td>Rs. 8000</td>
<td>Rs. 12000</td>
</tr>
</tbody>
</table>

All remittances can be made by netbanking/bank draft/cheque, the details of which can be sent on request by e-mail: contact@neptjournal.com.
All correspondence regarding subscription and publication of papers in the journal must be made only at the Managing Office at Karad.

EDITORIAL ADVISORY BOARD

1. Dr. Prof. Malay Chaudhury, Department of Civil Engineering, Universiti Teknologi PETRONAS, Malaysia
2. Dr. Saikat Kumar Basu, University of Lethbridge, Lethbridge AB, Canada
3. Dr. Sudip Datta Banik, Department of Human Ecology, Cinvestav-IPN Merida, Yucatan, Mexico
4. Dr. Elsayed Elsayed Hafez, Deptt. of Molecular Plant Pathology, Arid Land Institute, Egypt
5. Dr. Dilip Nandwani, College of Agriculture, Human & Natural Sciences, Tennessee State Univ., Nashville, TN, USA
6. Dr. Ibrahim Umaru, Department of Economics, Naragawa State University, Keffi, Nigeria
7. Dr. Prof. D.S. Mitchell, Albury, Australia
8. Dr. Prof. Alan Heritage, Sydney, Australia
9. Mr. Shun-Chung Lee, Dept. of Resources Engineering, National Cheng Kung University, Tainan City, Taiwan
10. Dr. Prof. P.K. Bhattacharya, Dept. of Chemical Engineering, IIT, Kanpur, U.P., India
11. Dr. Zawawi Bin Daud, Faculty of Civil and Environmental Engg., Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
12. Dr. Srijan Aggarwal, Civil and Environmental Engg., Ambo University, Ethiopia
13. Dr. M. I. Zuberi, Department of Environmental Engg., University of Rajasthan, India
14. Dr. Prof. A.B. Gupta, Dept. of Civil Engineering, MREC, Jaipur, India
15. Dr. Kiran Tota-Maharaj, Faculty of Engineering & Science, University of Warwick, Coventry, CV4 7AL, UK
16. Dr. Bing Jie Ni, Advanced Water Management Centre, The University of Queensland, Australia
17. Dr. Prof. S. Krishnamoorthy, National Institute of Technology, Tiruchirapalli, India
18. Dr. Prof. (Mrs.) Madhoolika Agarwal, Dept. of Botany, B.H.U., Varanasi, India
19. Prof. K. P. Sharma, Ecology Lab, Deptt. of Botany, University of Rajasthan, Jaipur-302 004, India
20. Dr. P. K. Goel, Former Head, Deptt. of Pollution Studies, Vidyanyagar, Karad-415 124, Maharashtra, India
21. Dr. Riccardo Buccolieri, University of Salento-DISTEBA, S.P. 6 Lecce-Monteroni - 73100 Lecce, Italy
22. Dr. Prof. A.M. Deshmukh, Dept. of Microbiology, Dr. B.A. Marathwada University Sub-Centre, Osmanabad, India
23. Dr. Prof. M.P. Sinha, Vinoba Bhave University, Hazaribagh, India
24. Dr. G.R. Pathade, Dept. of Biotechnology, Fergusson College, Pune, Maharashtra, India
25. Dr. T.S. Anirudhan, Dept. of Chemistry, University of Kerala, Trivandrum, Kerala, India
26. Dr. James J. Newton, Environmental Program Manager, 701 S. Walnut St. Milford, DE 19963, USA
27. Dr. M.G. Bodhankar, Dept. of Microbiology, Yashwantrao Mohite College, Pune, India
28. Dr. Murat Eyvaz, Department of Environmental Engineering, Gebze Inst. of Technology, Gebze-Kocaeli, Turkey
29. Dr. Jinhui Liu, School of Resources and Environment Science, Xinjiang University, Urumqi, China
30. Dr. Sandeep Y. Bodkhe, NEERI, Nagpur, India
31. Dr. S. Dawood Shariief, Dept. of Zoology, The New College, Chennai, T. N., India
32. Dr. B. N. Pandey, Dept. of Zoology, Purnia College, Purnia, Bihar, India
33. Dr. Wen Zhang, Deptt. of Civil and Environmental Engineering, New Jersey Institute of Technology, USA
34. Dr. B. N. Pandey, Dept. of Zoology, Purnia College, Purnia, Bihar, India
35. Dr. Xianyong Meng, Xinjiang Inst. of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
36. Dr. Ms. Shaheen Taj, Dept. of Chemistry, Al-Ameen Arts, Science & Commerce College, Bangalore, India
37. Dr. Nirmal Kumar, J. I., ISTAR, Vallabh Vidyanagar, Gujarat, India
38. Dr. Samir Kumar Khanal, Deptt. of Molecular Biosciences & Bioengineering, University of Hawaii, Honolulu, Hawaii
39. Dr. Prof. P. K. Goel, Former Head, Deptt. of Pollution Studies, Vidyanyagar, Karad-415 124, Maharashtra, India
40. Dr. Dr. S. Krishnamoorthy, National Institute of Technology, Tiruchirapally, India
41. Dr. Prof. (Mrs.) Madhoolika Agarwal, Dept. of Botany, B.H.U., Varanasi, India
42. Dr. Anthony Horton, Envirocarb Pty Ltd., Australia
43. Dr. Riccardo Buccolieri, University of Salento-DISTEBA, S.P. 6 Lecce-Monteroni - 73100 Lecce, Italy
44. Dr. Prof. A.M. Deshmukh, Dept. of Microbiology, Dr. B.A. Marathwada University Sub-Centre, Osmanabad, India
45. Dr. Prof. M.P. Sinha, Vinoba Bhave University, Hazaribagh, India
46. Dr. G.R. Pathade, Dept. of Biotechnology, Fergusson College, Pune, Maharashtra, India
47. Dr. T.S. Anirudhan, Dept. of Chemistry, University of Kerala, Trivandrum, Kerala, India
48. Dr. James J. Newton, Environmental Program Manager, 701 S. Walnut St. Milford, DE 19963, USA
49. Dr. M.G. Bodhankar, Dept. of Microbiology, Yashwantrao Mohite College, Pune, India
50. Dr. Murat Eyvaz, Department of Environmental Engineering, Gebze Inst. of Technology, Gebze-Kocaeli, Turkey
Conferences/Symposia/Workshops on Environment

<table>
<thead>
<tr>
<th>Conference Name</th>
<th>Date and Location</th>
<th>Website</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-Architecture 2016</td>
<td>13th to 15th July 2016, Alicante, Spain</td>
<td>http://www.wessex.ac.uk/16-conferences/eco-architecture-2016.html</td>
<td>Irene Moreno Millan</td>
</tr>
<tr>
<td>Water Pollution 2016</td>
<td>27th to 29th June 2016, Venice, Italy</td>
<td>http://www.wessex.ac.uk/16-conferences/water-pollution-2016.html</td>
<td>Irene Moreno Millan</td>
</tr>
<tr>
<td>8th International Congress of Environmental Research</td>
<td>27th to 28th July 2016, Luebeck, Schleswig-Holstein, Germany</td>
<td>http://www.wessex.ac.uk/16-conferences/energy-quest-2016.html</td>
<td>Irene Moreno Millan</td>
</tr>
<tr>
<td>Air Pollution 2016</td>
<td>20th to 22nd June 2016, Crete, Greece</td>
<td>http://www.wessex.ac.uk/16-conferences/air-pollution-2016.html</td>
<td>Irene Moreno Millan</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL NEWS

Annual Antarctic ozone hole larger and formed later in 2015

On Oct. 2, 2015, the ozone hole expanded to its peak of 28.2 million square kilometers (10.9 million square miles), an area larger than the continent of North America. Throughout October, the hole remained large and set many area daily records. Unusually cold temperature and weak dynamics in the Antarctic stratosphere this year resulted in this larger ozone hole. In comparison, last year the ozone hole peaked at 24.1 million square kilometers (9.3 million square miles) on Sept. 11, 2014. Compared to the 1991-2014 period, the 2015 ozone hole average area was the fourth largest.

“While the current ozone hole is larger than in recent years, the area occupied by this year’s hole is consistent with our understanding of ozone depletion chemistry and consistent with colder than average weather conditions in Earth’s stratosphere, which help drive ozone depletion,” said Paul A. Newman, chief scientist for Earth Sciences at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The ozone hole is a severe depletion of the ozone layer above Antarctica that was first detected in the 1980s. The Antarctic ozone hole forms and expands during the Southern Hemisphere spring (August and September) because of the high levels of chemically active forms of chlorine and bromine in the stratosphere. These chlorine- and bromine-containing molecules are largely derived from human-made chemicals that steadily increased in Earth’s atmosphere up through the early 1990s.

“This year, our balloon-borne instruments measured nearly 100 percent ozone depletion in the layer above South Pole Station, Antarctica, that was 14 to 19 kilometers (9 to 12 miles) above Earth’s surface,” said Bryan Johnson, a researcher at NOAA’s Earth System Research Laboratory in Boulder, Colorado. “During September we typically see a rapid ozone decline, ending with about 95 percent depletion in that layer by October 1. This year the depletion held on an extra two weeks resulting in nearly 100 percent depletion by October 15.”

The ozone layer helps shield Earth from potentially harmful ultraviolet radiation that can cause skin cancer, cataracts, and suppress immune systems, as well as damage plants. The large size of this year’s ozone hole will likely result in increases of harmful ultraviolet rays at Earth’s surface, particularly in Antarctica and the Southern Hemisphere in the coming months.

Ozone depletion is primarily caused by human-made compounds that release chlorine and bromine gases in the stratosphere. Beginning in 1987, the internationally agreed-upon Montreal Protocol on Substances that Deplete the Ozone Layer has regulated these ozone-depleting compounds, such as chlorine-containing chlorofluorocarbons used in refrigerants and bromine-containing halon gases used as fire suppressants. Because of the Protocol, atmospheric levels of these ozone depleting compounds are slowly declining. The ozone hole is expected to recover back to 1980 levels in approximately 2070.

This year, scientists recorded the minimum thickness of the ozone layer at 101 Dobson units on October 4, 2015, as compared to 250-350 Dobson units during the 1960s, before the Antarctic ozone hole occurred. Dobson units are a measure of the overhead amount of atmospheric ozone.

The satellite ozone data come from the Dutch-Finnish Ozone Monitoring Instrument on NASA’s Aura satellite, launched in 2004, and the Ozone Monitoring and Profiler Suite instrument on the NASA-NOAA Suomi National Polar-orbiting Partnership satellite, launched in 2011. NOAA scientists at the South Pole station monitor the ozone layer above that location by using a Dobson spectrophotometer and regular ozone-sonde balloon launches that record the thickness of the ozone layer and its vertical distribution. Chlorine amounts are estimated using NOAA and NASA ground measurements and observations from the Microwave Limb Sounder aboard NASA’s Aura satellite. These satellites continue a data record dating back to the early 1970s.

October 29, 2015, Science News
ENVIRONMENTAL NEWS

Here’s a softer side to the disruptive weather phenomenon known as El Nino: An enormous blanket of colorful flowers has carpeted Chile’s Atacama desert, the most arid in the world

The cyclical warming of the central Pacific may be causing droughts and floods in various parts of the world, but in the vast desert of northern Chile it has also caused a vibrant explosion of thousands of species of flowers with an intensity not seen in decades.

Yellows, reds, purples and whites have covered the normally stark landscapes of the Atacama, where temperatures top 40 degrees Celsius (104 Fahrenheit) this time of year.

From violet-and-white Chilean bell flowers, or “countryside sighs” (Nolana paradoxa), to red “lion claws” (Bomarea ovallei), to yellow Rhodophiala rhodolirion, they have filled the normally pale desert valleys with rivers of color.

“This year has been particularly special, because the amount of rainfall has made this perhaps the most spectacular of the past 40 or 50 years,” said Raul Cespedes, a desert specialist at the University of Atacama.

October 30, 2015, Times of India

Climate change set to create unbearable heatwaves in Middle East cities

Heatwaves in Middle East cities, including Abu Dhabi and Dubai, are on track to become unbearably hot for humans by the end of the century if climate change continues, scientists found. Communities in the Philippines are struggling to recover from Typhoon Koppu’s floods, while floods in Texas linked to Hurricane Patricia could leave the state with a hefty bill. Laos plans to expand its hydropower capacity to increase electricity exports. Tar sand operations in Canada are withdrawing too much water from the Athabasca River, according to an environmental group. Residents of Florida say water is the state’s biggest environmental threat.

October 27, 2015, The Stream

South Africa begins water restrictions amid drought

A severe drought in South Africa forced utilities to put in place water restrictions for Johannesburg and other major cities, while state officials in drought-hit California prepared for floods from El Nino. Dry weather in Europe is creating a shortage of oil in some inland countries due to low river levels. Residents of small Pacific island nations may lose drinking water before they are flooded by rising sea levels. The World Health Organization plans to vaccinate thousands of people in Iraq against cholera.

October 29, 2015, The Stream
Harmful algal blooms and climate change: Preparing to forecast the future

The findings of the international workshop on HABs and climate change were published in the journal *Harmful Algae*. The workshop was organized under the auspices of the North Pacific Marine Science Organization (PICES) and the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) and endorsed by the International Council for the Exploration of the Sea (ICES). The central findings were that while there are reasons to expect HABs to increase with climate change, poor scientific understanding seriously limits forecasts, and current research strategies will not likely improve this capacity. Empirical observations suggest cause for grave concern. Northward expansion of phytoplankton species, wider seasonal windows for HAB development, and an increasing prevalence of HABs worldwide all indicate a future with greater problems.

The impacts of algal blooms are extensive. Although phytoplankton blooms normally fuel productive ecosystems, some blooms create very low oxygen concentrations in bottom waters, killing or driving out marine fish or benthic organisms. Others produce potent neurotoxins that threaten ecosystems and human health. Evidence suggests that these destructive blooms, called red tides in the past but more properly “harmful” algal blooms, are increasing in frequency and severity, possibly from human causes. “There is growing concern among scientists that climate change may exacerbate this trend,” said Prof. Mark Wells, University of Maine and organizer of the workshop. “We are frustrated by the inadequate national research focus to determine the likelihood of these worst-case scenarios.”

The combined effects of increasing temperature and atmospheric CO₂ are affecting ocean surface temperatures, nutrients, light, and ocean water acidity, all of which affect marine ecosystems. These factors influence not just the intensity of algal blooms but also their composition. The question is whether climate change will enable harmful species to outcompete other phytoplankton. “It is critically important that we learn as much as possible, as precisely as possible, to fill the critical gap in knowledge between the current and the future phytoplankton community structure,” says Professor Charles Trick, Western University, Canada.

The challenge is that the mechanisms driving the development of most HABs are only partially understood. “We need to build on and link our patchwork knowledge of HABs to the forecast patterns of climate change if we are to better prepare society for future HAB scenarios,” said Wells.

The intense toxic phytoplankton blooms off the west coast of North America this summer appear to be associated with unusual warming-related conditions. “Does this large scale harmful algal bloom provide a window into the future?” said Dr. Vera Trainer of NOAA Fisheries’ Northwest Fisheries Science Center. “While it still is unclear, there is reason for substantial concern.”

The workshop participants developed several urgent recommendations on research priorities. These include re-orientating research to study how harmful species interact in planktonic communities, focus more intensive study on key organisms, emphasize developing ecological and forecast models, and strengthen linkages among global, national and regional observation programs.

“Past research has brought great understanding of individual HAB organisms; future work must concentrate on how these harmful species fit into their ecosystems. It is the most significant coastal challenge facing society today,” said Trick.

Although workshop participants were optimistic, they urged fundamental shifts in HAB research so that science can better inform public debate over climate change effects on the oceans, rather than just seeking to explain destructive patterns after they develop.

October 26, 2015, Science News
ENVIRONMENTAL DAYS TO CELEBRATE IN 2016

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Date</th>
<th>Environmental Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-2-2016</td>
<td>World Wetlands Day</td>
</tr>
<tr>
<td>2</td>
<td>27-2-2016</td>
<td>International Polar Bear Day</td>
</tr>
<tr>
<td>3</td>
<td>3-3-2016</td>
<td>World Wildlife Day</td>
</tr>
<tr>
<td>4</td>
<td>21-3-2016</td>
<td>International Day for Forests</td>
</tr>
<tr>
<td>5</td>
<td>22-3-2016</td>
<td>World Water Day</td>
</tr>
<tr>
<td>6</td>
<td>22-4-2016</td>
<td>Earth Day</td>
</tr>
<tr>
<td>7</td>
<td>9-5-2016</td>
<td>World Migratory Bird Day</td>
</tr>
<tr>
<td>8</td>
<td>(11-15)-5-2016</td>
<td>Walk to Work Week</td>
</tr>
<tr>
<td>9</td>
<td>22-5-2016</td>
<td>International Day for Biological Diversity</td>
</tr>
<tr>
<td>10</td>
<td>5-6-2016</td>
<td>World Environment Day</td>
</tr>
<tr>
<td>11</td>
<td>8-6-2016</td>
<td>World Oceans Day</td>
</tr>
</tbody>
</table>