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ABSTRACT
This study evaluated the trace metal sources and their spatial distribution in surface sediments in
Chaohu Lake, China, using multivariate statistical analysis and geostatistics. The results of the multivariate
statistical analysis, including principal component analysis and cluster analysis, indicated that Cu, Pb
and Zn were significantly influenced by anthropogenic sources, whereas, the remaining studied
metals mainly originated from natural sources. Ordinary kriging was used to plot the spatial distribution
of the trace metals and principal component scores, while indication kriging was applied to generate
the probability of the trace metals exceeding their pollution threshold values. We found that natural
origins and the grain size effect influenced the spatial distribution of Al, Cr, Fe, Mg, Ni, and V, while
human sources combined with the former two factors affected the spatial distribution of Cu, Pb and
Zn. The spatial distribution of each principal component scores represented the spatial impact of
corresponding component on this lake. The possibility maps show that some areas had a high ecological
risk caused by Cu, Pb and Zn. Multivariate statistical analysis and geostatistics are concluded to be
effective tools to study trace metals.
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INTRODUCTION

As the trace metals are non-biodegradable and can pose a
large ecological risk, pollution caused by them has been an
environmental issue of particular public concern (Wang et
al. 2012). When entering aquatic systems, trace metals are
adsorbed on particulate matter in water bodies and ultimately
accumulate in sediments (Dassenakis et al. 2003). However,
if the conditions of the sediments (e.g., perturbation) change,
trace metals may be desorbed from them, threatening the
food chain and ecosystems and ultimately endangering
human health (Hu et al. 2014, Senesi et al. 1999). Therefore,
it is important to survey trace metal concentrations and their
spatial distribution in sediments in order to identify possi-
ble pollution control strategies.

When studying the spatial distribution of contaminants,
it is impractical to survey every site in a study area, because
of time and cost limitations (Yin et al. 2011). Hence, inter-
polation techniques are commonly employed to estimate
the concentrations of contaminants at unsampled sites.
Geostatistical methods are regarded as the optimal interpo-
lation techniques owing to their unbiased estimation and
accurate prediction of the interpolation errors. Therefore,

such methods are usually used for the interpolation and
generation of the spatial distribution of contaminants (Hani
et al. 2011, Simasuwannarong et al. 2012).

Geostatistical methods have many variants such as ordi-
nary kriging (OK) and indicator kriging (IK). OK is used to
map the spatial distribution of contaminants, whereas IK, a
nonparametric geostatistical method, can be employed to
plot risk maps relative to the pollution threshold values.
For instance, Shi et al. (2007) employed OK and log normal
kriging to plot the spatial distribution of six contaminants
in Changxing, China. Dash et al. (2010) applied OK to esti-
mate groundwater depth and quality parameters in Delhi
and used IK to generate hazardous maps of quality param-
eters in relation to the pollution threshold values. Arslan
(2012) applied OK and IK to study the spatial pattern of
ground salinity in Bafra Plain, Turkey.

Trace metals in sediments originate from natural origins
and anthropogenic sources such as parent materials, indus-
trial activities and agricultural practices (Nemr et al. 2006).
Because of the interactive influences of natural and anthro-
pogenic inputs, the sources of trace metals become more
complicated and thus difficult to interpret (Liu et al. 2003).
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Multivariate statistical analysis methods, including princi-
pal component analysis (PCA), cluster analysis (CA), are
powerful tools for the identification of common patterns in
dataset distributions, leading to dimensionality reductions
for raw datasets and facilitating the interpretation of the
results. Therefore, these methods are used to apply in stud-
ies of metals. For example, Lee et al. (2006) combined PCA
with CA to discuss metal pollution in soils in Hong Kong,
and found clearly different associations among metals in
different study areas, while Gu et al. (2012) employed PCA
to identify possible sources of metallic elements and de-
tected two kinds of anthropogenic sources.

Because it overlooks the spatial relationships between
sampling sites, multivariate statistical analysis may lose im-
portant information included in the spatial distribution.
Meanwhile, only relying on geostatistical methods ignores
the relationships between trace metals, making it hard to
distinguish different origins. Therefore, many studies have
combined the multivariate statistical analysis and geostatis-
tics to study the trace metals (McGrath et al. 2004, Shrestha
et al. 2007).

In recent decades, the rapid economic development,
population growth and continuous urbanization in the
Chaohu Lake watershed have caused environmental dete-
rioration and pollution by trace metals, especially Cu, Pb,
Zn. Pervious authors have studied the spatial distribution
of heavy metals and their sources (Li et al. 2012, Yin et al.
2011, Zheng et al. 2010). Nevertheless, studies on the ex-
tent of the impact of different sources on this lake and the
spatial distribution and probability maps of trace metals
based on geostatistics are still needed.

The present study was conducted to understand the trace
metal origins and their spatial distribution in surface
sediments of Chaohu Lake using geostatistics, multivariate
statistics. The aims of this study were to: 1) define the pos-
sible sources of trace metals and the spatial impacts of these
sources on this lake; 2) map the spatial distribution of trace
metals in surface sediments; 3) plot the risk maps of trace
metals exceeding the pollution threshold values.

MATERIALS AND METHODS

Study area: Chaohu Lake, one of the five largest freshwater
lakes in China, lies within 117°16’54’ -117°51’46’ E longi-
tude and 31°25’28’-31°43’28’ N latitude and is located in
central Anhui Province. Chaohu Lake has an average depth
of 2.7 m, with a water surface area of about 780 km2 and a
watershed area of 13,350 km2. The watershed of this lake
has an annual mean temperature of 16°C and an annual
mean rainfall of 996 mm with a subtropical monsoon cli-
mate. The lake has 33 inflow rivers, of which the Dianbu

River, Nanfei River, Pai River, Fengle River, Hangbu River,
Baishishan River, and Zhao River are the major rivers, with
only one outflow river (Yuxi River) feeding Yangtze River.
Several cities (e.g., Hefei City, capital city of Anhui Prov-
ince, and Chaohu City) surround this lake.

In the past three decades, Chaohu Lake has witnessed
significant economic growth and urban development in its
watershed. At the same time, this lake has experienced seri-
ous pollution because of the discharge of massive amounts
of industrial and domestic sewage. For example, in 1985,
the discharge was estimated to be about 1.5×108 tons, in-
cluding 1.1×108 tons from Hefei City and 0.3×108 tons from
Chaohu City (Bing et al. 2013). The pollution from Nanfei
River, the major sewage discharge channel for Hefei City, is
more serious than that from other rivers.

Sediment sampling and analysis: During April 2009 and
April 2011, 61 sediment samples were obtained by a grav-
ity corer from Chaohu Lake with the latitudes and
longitudes positioned using the Global Positioning System
(GPS). Considering the fact that the heavy metal pollution
in the western lake is more serious than that in the eastern
and central lake (Li et al. 2012, Liu et al. 2012), relatively
more sampling sites were selected in the western lake. Sam-
pling sites are mapped in Fig. 1. The top surface 2 cm of
surface sediments was gathered, put into plastic bags, and
placed into an icebox temporarily. After being transported
to the laboratory, these sediments were immediately pre-
served below 4°C.

Sediments were freeze-dried and ground with an agate
pestle and a mortar, sieved, and then were totally digested
with HCl-HNO

3
-HF-HClO

4
. Metal concentrations were de-

termined by Inductively Coupled Plasma-Atomic Emission
Spectrometry (ICP-AES). The accuracy and precision of the
experiment were ensured by using blanks, replicates, and
standard reference sediments offered by the Chinese Acad-
emy of Geological Sciences. Particle size was measured by
using a Malvern Mastersizer 2000.

Multivariate statistical analysis: Before multivariate sta-
tistical analysis, the normality of the variable was checked
(Brumelis et al. 2000). If a variable is not normally distrib-
uted, a transformation, either a log transformation or a box-
plot transformation, should be performed to reduce the
skewness and kurtosis values of the variable.

PCA, one of the most popular multivariate statistical
analysis methods, renders the original dataset dimensionless,
extracting the most meaningful information from the origi-
nal dataset with the minimum loss of useful information.
PCA transforms the initial variables of the data into new,
uncorrelated variables, known as principal components
(PCs), which are linear combinations of the initial variables
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(Shrestha et al. 2007). In addition, Varimax rotation is usu-
ally employed to maximize the sum of the variance of the
factor coefficients (Bhuiyan et al. 2011). Therefore, in the
analysis of trace metals, some studies have employed PCA
to identify and visualize the origins of trace metals (Bai et
al. 2011, Zhou et al. 2007a).

CA, another multivariate statistical analysis method, is
used to classify the cases or variables of a dataset into groups/
clusters, based on the contribution from expected origins
(Bhuiyan et al. 2011). The former mode that sorts the cases
is named the Q-mode, while the latter mode that classifies
the variables is termed the R-mode. The results generated
by CA demonstrate that the degree of association is strong
between members of the same group and weak between
members of different groups. Before CA analysis, the initial
data need to be standardized because different variables
have different ranges. In this study, Pearson correlation was
used to measure the similarity among groups integrated with
the between-group linkages method as an agglomeration
approach. Then, the results were visualized using a
dendrogram which represented the hierarchical clustering
procedure.

Geostatistical analysis: The analysis of experimental val-
ues was guided by the following four steps. First, the de-
scriptive statistics of the data were generated, e.g., means.
Second, the normality of the variables was examined with
the Kolmogorov-Smirnov test. Third, the suitable theoreti-
cal semivariogram models for different trace metals were
tried. Finally, OK and IK were applied to generate the spa-
tial distribution of the trace metals and their probability
maps in relation to their pollution threshold values.

Geostatistics is based on the regionalized variable theory
that states that a regionalized variable has two properties,
namely randomness and a spatial structure. The latter prop-

erty implies spatial autocorrelation, meaning that the sam-
ples that exist far away in space are less like than those are
close (McGrath et al. 2004). The most important aspect of
geostatistics is the generation of a semivariogram, which
represents the spatial variability of the regionalized vari-
able and provides the input parameters for kriging interpo-
lation (Zhang et al. 2004). The semivariogram can be calcu-
lated as follows (Goovaerts 1999, Shi et al. 2008):

 γ(h)=
1

2N(h)
[Z(xi+h)-Z(xi)]2

N(h)

i=1

                                 ...(1)

Where, y(h) expresses the semivariance value for the ob-
served pairs at lag distance h, N(h) states the number of
observed pairs of sampling sites separated by distance h
and Z(x

i
) is the value of the regionalized variable Z at site x

i
.

Geostatistics has 11 different theoretical semivariogram
models, such as the Hole Effect, and J-Bessel. Once the best-
fit model for the semivariogram is determined, three
semivariogram parameters, including the nugget (C

0
), the

sill (C
0
+C), and the range (A

0
), would be computed. C

0 
rep-

resents the structural variance, and C
0
+C the population

variance. A
0
 represents the spatial range across which the

variable shows spatial dependence. Anisotropic spatial vari-
ability can be gained by computing the corresponding di-
rection semivariogram. In this paper, however, only isotopic
spatial variability was taken into consideration.

The OK method assumes a constant unknown mean and
predicts the value of the unsampled site as a linear combi-
nation of the surrounding site values. The coefficients of
this linear combination known as weights depend on 1) the
distance between the corresponding surrounding site and
the predicted site, and 2) the semivariogram of the variable
(Dash et al. 2010). The related equations are given as
follows:

Fig. 1: Study area and distribution of sampling sites.
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Fig. 2: Spatial distribution maps of the trace metals and fine-grained particles (OK).

  Z(x0)=μ+ε(x0)                                  ...(2)

 Z(x0)= λi

n

i=1

Z(xi),    λi = 1
n

i=1

         ...(3)

Where,  is an unknown constant, Z(x
0
) represents the pre-

dicted value of the regionalized variable at the predicted
site x

0
, Z(x

i
) expresses the measured value of the variable at

site x
i
, 

i
 is the weight for Z(x

i
) and (x

0
) is the error in asso-

ciation with x
0
.

The IK method does not demand that the raw dataset be
normally distributed, and the binary function (0 or 1) is
employed to guarantee this method is resistant to outliers
(Hassan et al. 2011, Lee et al. 2007). Based on the pollution
threshold value Z

p
, IK transforms the regionalized variable

into an indicator variable as follows (Lin et al. 2011):

                                                                 ...(4)

    The expected value of I(x;Z
p
)|n), conditional on n sur-

rounding data, can be expressed as:

         ...(5)

IK is based on an estimator, which can be written as:

 
                      ...(6)

Where, I(x
i
;Z

p
)n) represents the indicator value at the

measured site x
i
 and 

j
(Z

p
) is the weight of I(x

i
;Z

p
)n).

The cross-validation procedure is carried out as follows:
Each time, a site is removed and its estimated value is calcu-
lated based on the values of the remaining sites, with the
selected model and its parameters. Then the estimated val-
ues of all sites are combined with their measured values to
generate the prediction errors and compute the correlation
between the measured and estimated values. Afterwards, the
predication errors and correlation are used to assess whether
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the selected model is the best-fit model for the current
semivariogram. The best-fit model must meet the following
requirement: The mean standardized error (SME) is closest
to zero, and the root mean square error (RMSE) and average
standard error (ASE) are minimized, and the root mean square
standardized error (RMSSE) is closest to one.

Numerical sediment quality guidelines (SQGs) for fresh-
water and marine ecosystems have been developed to iden-
tify the relationships between contaminant concentrations
and harmful biological effects (MacDonald et al. 2000).
Herein, the consensus-based SQGs developed for freshwa-
ter ecosystems were employed to assess the harmful bio-
logical effects caused by the trace metals in Chaohu Lake
(MacDonald et al. 2000). These guidelines have two thresh-
old values, namely the threshold effect concentration (TEC)
and the probable effect concentration (PEC). Below the TEC
values, the harmful biological effects of metals are not ex-
pected to occur, whereas, above the PEC values, harmful
biological effects are likely to be observed. In this study,
the TEC values were selected as the pollution threshold
values.

Data processing: Before conducting the multivariate sta-
tistical analysis, the normality of the original data and basic

statistical parameters were calculated using the SPSS soft-
ware. Multivariate statistical analyses, including PCA, CA
and correlation analysis, were also performed in SPSS. In-
terpolation at unsampled sites as well as the spatial distri-
bution maps and probability maps exceeding the pollution
threshold values were depicted using ArcGIS 9.3 with
Geostatistical Analyst Extensions.

RESULTS AND DISCUSSION

Descriptive statistics: The descriptive statistics of the trace
metal concentrations and fine-grained particles are presented
in Table 1. The percentage of fine-grained particles (<16
µm) varied from 12.28% to 97.04%. The concentration
ranges of Al, Cr, Cu, Fe, Mg, Ni, Pb, V, and Zn were 32.59-
92.50 g/kg, 29.13-116.76 mg/kg, 9.71-47.04 mg/kg, 11.27-
52.25 g/mg, 1.61-8.67 g/mg, 9.47-52.68 mg/kg, 17.93-
100.85 mg/kg, 33.03-126.62 mg/kg, and 44.08-523.37 mg/
kg, respectively. In the analysis of the trace metals, it is
necessary to compare the trace metal concentrations with
their background values to determine the pollution levels
of these metals. The trace metal concentrations of core
sediments corresponding to the pre-industrial period were
adopted as the background values (Liu et al. 2012). The

Table 1: Descriptive statistics of the trace metals and fine-grained particles.

Element Range  Mean    SD    Skewness Kurtosis CV(%) BV K–S

Al (g/kg) 32.89–92.50 70.12 14.20 -0.55 2.48 20.25 49.0 0.220
Cr (mg/kg) 29.13–116.76 80.64 18.07 -0.37 3.12 22.41 52.9 0.934
Cu (mg/kg) 9.71–47.04 28.42 8.27 -0.04 2.74 29.10 11.4 0.994
Fe (g/kg) 11.27–52.25 35.62 9.11 -0.51 2.59 25.59 22.4 0.565
Mg (g/kg) 1.61–8.67 6.22 1.69 -0.76 2.82 27.19 3.9 0.250
Ni (mg/kg) 9.47–52.68 35.31 9.97 -0.38 2.51 28.24 21.3 0.748
Pb (mg/kg) 17.93–100.85 56.40 20.33 0.56 2.65 36.04 21.3 0.300
V (mg/kg) 33.03–126.62 93.82 24.02 -0.67 2.37 25.60 n d 0.062
Zn (mg/kg) 44.08–523.37 187.04 108.80 0.78 2.92 58.17 41.2 0.056
<16µm(%) 12.28–97.04 60.70 - - - - - -

SD: standard deviation; BV: background value; “-”: no data.

Table 2: Best-fit semivariogram models of the trace metals and their parameters (OK).

Element Model Nugget (C0) Sill (C0+C) Range (m) RNS (%)

Al Pentaspherical 5.906 246.080 7417 2.40
Cr Pentaspherical 77.380 351.280 7290 22.02
Cu Rational Quadratic 22.608 65.514 12,210 34.51
Fe Gaussian 14.549 87.128 5477 16.70
Mg Circular 0.088 3.119 5590 2.82
Ni Spherical 3.054 121.590 5943 2.51
Pb J-Bessel 191.300 285.690 10,725 66.96
V Gaussian 103.660 598.870 5954 17.31
Zn Hole Effect 4287.800 9234.900 23,037 46.43
PC1 Spherical 0.237 7.944 5768 2.98
PC2 Rational Quadratic 1.874 4.251 12,643 44.08
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ratios of the mean concentrations of the nine metals to their
background values were 1.43, 1.52, 2.49, 1.59, 1.59, 1.66,
2.65, and 4.54, respectively, with Cu, Pb, and Zn having
higher ratios than the remaining metals.

The coefficient of variation (CV) of the trace metals in
sediments had a wide range, varying from 20.25% to 58.17%,
suggesting that they had light/moderate variation. Of the
studied metals, Cu, Pb and Zn had high CV values, indicat-
ing that these metals may have a high probability of being
polluted by human inputs (Wang et al. 2011). The remain-
ing metals displayed low variation, implying they were
likely to be from natural origins.

Multivariate statistical analysis and OK work best if the
variable satisfies the normal assumption. Therefore, the
Kolmogorov-Smirnov test for normality (K-S) was con-
ducted to check the normality of the trace metals. The re-
sults demonstrated that the values of all metals were more
than 0.05, indicating that they were normally distributed.

Ordinary kriging for trace metals: Because the trace met-
als in sediments belong to regionalized variables, geosta-
tistics was employed to study their spatial structure and
generate their spatial distribution (Chen et al. 2013). The
semivariogram model attributes, including C

0
, C

0
+C and

A
0
, and best-fit models are given in Table 2. In addition,

cross-validation results, including RMSE, ASE, MSE and
RMSSE, are presented in Table 3. Meanwhile, the spatial
distribution of the trace metals is presented in Fig. 2.

As Table 2 shows, different metals had different best-fit
semivariogram models. The semivariogram models for the
metals were suitable for a Pentaspherical model (Al, Cr),
Rational Quadratic model (Cu), Gaussian model (Fe, V),
Circular model (Mg), Spherical model (Ni), J-Bessel model
(Pb), and Hole Effect model (Zn).

Nugget variance represents the experimental error and
field variation within the minimum sampling spacing. The
ratio of nugget/sill (RNS) can be employed to assess the
level of spatial heterogeneity for metals in sediments, with
an RNS less than 25% implying high spatial dependence,
an RNS between 25% and 75% suggesting moderate spatial
dependence, and an RNS more than 75% indicating weak
spatial dependence (Liu et al. 2006). The spatial depend-
ence of trace metals might be influenced by intrinsic factors
(natural factors) and extrinsic factors (human factors). Gen-
erally, the high spatial dependence of trace metals can be
ascribed to intrinsic factors and weak spatial dependence to
extrinsic factors.

Table 3: Cross-validation between measured and predicted values of the trace metals (OK).

Element RMSE ASE MSE RMSSE Correlation

Al 9.923 12.320 0.0093 0.990 0.713a

Cr 12.750 17.600 0.0190 0.822 0.703a

Cu 5.243 7.468 -0.0023 0.776 0.772a

Fe 6.197 7.395 -0.0068 0.976 0.737a

Mg 1.125 1.349 0.0155 1.014 0.750a

Ni 6.386 8.702 0.0086 1.018 0.766a

Pb 12.610 18.290 0.0377 0.760 0.783a

V 15.500 18.880 -0.0096 0.976 0.771a

Zn 54.120 75.150 -0.0058 0.764 0.868a

PC1 1.717 2.260 0.0107 0.999 0.746a

PC2 1.326 2.014 0.0054 0.729 0.777a

a Significant at the 0.01 level

Table 4: The correlation matrix of the trace metals and fine-grained particles.

Al Cr Cu Fe Mg Ni Pb V Zn

Cr 0.909a

Cu 0.698a 0.879a

Fe 0.950a 0.919a 0.718a

Mg 0.949a 0.903a 0.675a 0.942a

Ni 0.936a 0.981a 0.827a 0.953a 0.925a

Pb 0.650a 0.796a 0.894a 0.637a 0.558a 0.751a

V 0.939a 0.913a 0.671a 0.951a 0.962a 0.949a 0.531a

Zn 0.142 0.368a 0.666a 0.152 0.049 0.286b 0.805a 0.005
<16µm 0.738  a 0.790  a 0.649  a 0.772  a 0.696  a 0.802  a 0.673  a 0.731  a 0.316  a

aSignificant at the 0.01 level (two-tailed test); bSignificant at the 0.05 level (two-tailed test)
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The RNSs for nine metals ranged from 2.40% to 66.96%.
The RNSs of Cu, Pb and Zn, between 25% and 75%, showed
moderate spatial dependence, which suggests that human
factors may weaken their dependence. The RNSs for Al, Cr,
Fe, Mg, Ni, and V, less than 25%, showed moderate depend-
ence, implying they may result from natural factors. Al-
though the RNS can provide useful information on the spa-
tial dependence of a spatial variable, it is less sensitive to
the variable than the range value (Chen et al. 2008). The
range values for trace metals varied from 5,477 to 23,037 m.
As Table 3 shows, the correlation between the estimated
values and measured values of the trace meals was signifi-
cant, implying that the prediction was accurate.

The spatial distribution of the trace metals, with the ex-
ception of Zn, exhibited similar spatial features, with high
concentrations in the western lake, medium concentrations
in the eastern lake and low concentrations in the central
lake. In addition, the highest concentrations occurred in the
central part of the western lake. Previous research has dem-
onstrated that the concentrations of trace metals in
sediments are strongly impacted by grain size, termed the
grain size effect, because as sediment becomes finer, its sur-
face specific surface area tends to rise, resulting in an in-
crease in the concentrations of trace metals (Liu et al. 2014,

Zhang et al. 2009a). In this study, these metals were highly
correlated with fine-grained particles (Table 4), and the spa-
tial distribution of these trace metals was similar to that of
fine-grained particles (Fig. 2), implying that the grain size
effect influences these metals. Therefore, it can be inferred
that the spatial distribution of these metals is affected by
the grain size effect. Considering that Al, Cr, Fe, Mg, Ni and
V had low CV values close to their background values, these
metals are likely to be from natural origins as well as influ-
enced by the grain size effect. By contrast, Cu and Pb had
high CV values and were apparently higher than their back-
ground values, indicating that they are affected by human
inputs besides natural origins and the grain size effect.

The spatial distribution of Zn was different from that of
other metals, with high concentrations in the western lake
and low concentrations in the eastern lake and central lakes.
The concentrations in the western lake decreased drasti-
cally from northwest to southeast, with the highest concen-
trations occurring at the mouth of Nanfei River. Meanwhile,
the spatial distribution of Zn did not follow that of  the fine-
grained particles, indicating the existence of other sources
influencing Zn. In addition, Zn had high a CV value that
was distinctly higher than its background value, implying
that human inputs influenced it in addition to natural ori-

Fig. 3: Dendrogram of the cluster analysis of the trace metals.

Fig. 4: Spatial distribution maps of PC1 and PC2 (OK).
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gins and the grain size effect.

PCA analysis: PCA was conducted to identify the possible
origins of the trace metals and explore the hidden relation-
ships among the studied metals. Two PCs with eigen values
greater than 1 were extracted. These two PCs represented all
variables well because they explained 96.26% of the total
variance. The PCA results are presented in Table 5. Before
the interpretation of these results, the Kaiser-Meyer-Olkin
test and Bartlett’s test were conducted to check the applica-
bility of PCA (Zhou et al. 2007b). The results were 0.88 and
1,209 (df=36, p<0.05), respectively, suggesting that PCA
can be used to reduce dimensionality.

The first PC (PC1) accounted for 66.04% of the total
variance and had strong loading for Al, Cr, Cu, Fe, Mg, Ni
and V. Among these metals, Al and Fe generally originated
from parent rock. As Table 4 shows, these elements were
strongly correlated with each other, indicating that they
may share common sources. Moreover, these metals had
low CV values and their mean concentrations were close to
the background values, with the exception of Cu. There-
fore, it is reasonable to deduce that PC1 may result from
natural sources.

The second PC (PC2) explained 30.22% of the total vari-
ance and it was contributed by Cu, Pb and Zn. Pb and Zn
showed low values in PC1, indicating that other sources
that influence the concentrations of Pb and Zn exist. Cu, Pb,
and Zn had high CV values and high concentrations com-
pared with their background values. Some studies have as-
sociated high concentrations of Cu, Pb and Zn in sediments
with anthropogenic inputs (Zhang et al. 2009b). In addi-
tion, previous research has also pointed out that the pollu-
tion of Cu, Pb and Zn in Chaohu Lake is related to the
industrial and domestic wastewater (Yin et al. 2011). Thus,
it can be concluded that PC2 is controlled by human inputs.

Cu exhibited a merged relationship with PC1 and PC2.

In addition, Cu was significantly correlated with the remain-
ing members of PC1, while, it was also strongly related to
Pb and Zn in PC2. All these findings confirmed that this
metal was dominated by a merged source.

Cluster analysis:  R-mode CA was carried out to determine
the origins of the trace metals in sediments. The CA results
are presented in Fig. 3. Overall, they are consistent with
those derived from the PCA. The nine metals were merged
into two clusters. Cluster 1 was made up of Al, Cr, Fe, Mg,
Ni and V. This cluster was in agreement with PC1 in the
PCA analysis. Cluster 2 comprised of Cu, Pb, and Zn. These
three metals were interpreted as anthropogenic metals. Of
them, Zn had the furthest linkage distance.

Based on CA, PCA, and the spatial distribution of the
trace metals, the origins of the trace metals could be de-
fined. We found that Al, Cr, Fe, Mg, Ni and V mainly origi-
nated from natural origins, while, Cu, Pb, and Zn were from
human inputs in addition to natural inputs.

Although the spatial distribution of Cu and Pb was simi-
lar to that of Al, Cr, Fe, Mg, Ni and V, the origins of Cu and
Pb were not the same as those of these metals. By only rely-
ing on the spatial distribution of trace metals, it is hard to
identify their origins. However, it is practicable to combine
PCA, CA, and geostatistics to explore the possible origins
of trace metals.

Spatial impacts for PC1 and PC2: Component scores state
the cumulative contribution for each metal loaded on the
corresponding PC. To understand the spatial variability of
impact for PC1 and PC2, the maps of the two PC scores were
generated using the OK method. The semivariogram at-
tributes are shown in Table 2 and the cross-validation re-
sults are listed in Table 3. Meanwhile, the spatial distribu-
tion of the PC1 and PC2 scores are mapped in Fig. 4.

PC1 was fitted with a Spherical model, whereas PC2 was
suitable for a Hole Effect model. The RNS for PC1, less than
25%, showed strong dependence owing to intrinsic factors,
while the RNS for PC2, in the range of 25%-75%, exhibited
moderate dependence, suggesting that extrinsic factors
might influence its spatial dependence.

The PC1 scores map represents the extent of the impact
of natural origins on Chaohu Lake. The PC1 scores varied
from -6.87 to 4.43, and 58.08% of areas had positive scores,
indicating the importance of natural origins there. PC1
showed a similar spatial distribution as its members such as
Al, Cr. As discussed earlier, the spatial distribution of PC1
might be influenced by the grain size effect because of the
impact of this effect on its members.

The PC2 scores map (Fig. 4) demonstrates the extent of
the effect of human sources on this lake. The PC2 scores

Table 5: Total variance explained and rotated component matrix of
the trace metals.

Element PC1 PC2

Al 0.949 0.210
Cr 0.879 0.451
Cu 0.604 0.746
Fe 0.952 0.216
Mg 0.973 0.118
Ni 0.921 0.367
Pb 0.472 0.861
V 0.988 0.085
Zn -0.078 0.986
Eigen value 5.944 2.720
% of Variance 66.04 30.22
Cumulative % 66.04 96.26
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ranged from -5.10 to 4.81, and 31.13% of areas had factor
scores above zero, implying that human activities signifi-
cantly influenced these areas. The PC2 scores in the western
lake decreased in the northwest-southeast direction. The
highest PC2 scores occurring in the northwest part of the
western lake might be attributed to the proximity of the
mouth of Nanfei River. As discussed previously, Nanfei
River receives a large amount of industrial and municipal
sewage from Heifei City. Thus, in these areas, the highest
PC2 scores can be expected. The PC2 scores in the eastern
lake were markedly lower than those in the western lake,
but higher than those in the central lake. The PC2 scores in
the eastern lake ranged from -0.83 to 0.43, suggesting a
moderate pollution effect from Chaohu City.

In this study, multivariate statistical analysis and
geostatistical methods were combined to explore the ori-
gins of trace metals in sediments and understand their spa-
tial dependence. In some studies, geostatistical methods
have only been employed to interpolate values at unsampled
points, ignoring the spatial characteristics (Guo et al. 2012,
Yuan et al. 2014). Indeed, when semivariogram attributes

have been used to understand the spatial dependence of the
trace metals, they can also be employed for the identifica-
tion of the origins of the trace metals as in multivariate
statistical analysis (Chen et al. 2008). Therefore, studies of
the origins of trace metals should analyse their dependence.

IK for trace metals in relation to the pollution threshold
values: Considering that Cu, Pb and Zn are influenced by
human sources and might have harmful ecological effects,
probability maps relative to the pollution threshold values
were generated based on IK. The pollution threshold values
for Cu, Pb and Zn were 31.6, 35.8 and 121.0 mg/kg, respec-
tively. The attributes of the semivariograms for these met-
als, cross-validation results and estimations of the areas
potentially affected by each metal are summarized in Table
6-8, respectively, while the probability maps for Cu, Pb and
Zn exceeding their pollution threshold values are plotted
in Fig. 5.

The Hole Effect model was the best-fit model for the
semivariogram for Cu; the Exponential model was for Pb;
and the J-Bessel model was for Zn. The RNSs for Cu, Pb, and
Zn were between 25% and 75%, indicating that each metal

Fig. 5: Probability maps for the trace metals (IK).

Table 6: Best-fit semivariogram models of the trace metals and their parameters (IK).

Element Models Nugget (C0) Sill (C0+C) Range (m) Nugget ratio

Cu Hole Effect 0.107 0.114 10,014 94.47
Pb Gaussian 0.047 0.143 13,913 32.87
Zn J-Bessel 0.075 0.296 34,264 25.34

Table 7: Cross-validation between measured and predicted values of the trace metals (IK).

Element RMSE ASE MSE RMSSE Correlation

Cu 0.332 0.417 0.0384 0.832 0.643a

Pb 0.335 0.264 0.0045 1.238 0.377a

Zn 0.241 0.303 -0.0383 0.806 0.756a

a Significant at the 0.01 level
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shows moderate spatial dependence. The range values for
these metals ranged from 10,014 to 34,264 m. The cross-
validation demonstrated the accuracy of the estimation, with
a significant correlation between the estimated values and
measured values of the trace metals.

For Cu, 11.2% area of the lake fell within the high eco-
logical risk category (i.e., probability between 0.6 and 1.0).
These areas were mainly situated in the central part of the
western lake and the eastern part of the eastern lake because
of anthropogenic origins of Cu in these areas. This finding
is consistent with the spatial distribution of Cu, which is
considered to be a severe contaminant in aquatic ecosys-
tems. Therefore, more attention should be paid to the exces-
sive accumulation of Cu in these area. The remaining areas,
nearly 85% of the lake, had a low probability (Table 8),
indicating a low ecological risk there. For Pb, the areas with
a high ecological risk were nearly 86% of the lake. The
mean concentration of Pb was clearly higher than its pollu-
tion threshold. Therefore, a number of areas with a high risk
can be expected. Pb is also a severe contaminant that could
cause many diseases such as colic and anemia. Therefore,
Pb in this lake requires further monitoring to control pollu-
tion. For Zn, the areas with a high ecological risk were about
25% of the lake. These areas were distributed in the north-
west part of the western lake. The remaining areas with low
risk, can be considered to be safe (possibility was less than
0.4).

CONCLUSIONS

Sixty-one surface sediments gathered from Chaohu Lake
were analysed for trace metal concentrations by ICP-AES.
The concentrations of all studied metals were normally dis-
tributed. Cu, Pb and Zn had high CV values and were mark-
edly higher  than their background values. Cu, Pb and Zn
had moderate spatial dependence, implying that human in-
puts weaken their spatial dependence, whereas the remain-
ing metals had high spatial dependence, implying the im-
portance of natural origins. Al, Cr, Fe, Mg, Ni and V had
similar spatial characteristics, with high concentrations in
the western lake, medium concentrations in the eastern lake,

and low concentrations in the central lake. These may origi-
nate from natural origins and are influenced by the grain
size effect. Cu, Pb and Zn were thus impacted by human
inputs in addition to natural origins and the grain size ef-
fect. Two component factors were extracted by PCA, which
represented 96% of the total variance. PC1 represented natu-
ral origins, whereas PC2 represented human inputs. The CA
results verified those of PCA, with cluster 1 containing Al,
Cr, Fe, Mg, Ni and Cr and cluster 2 including Cu, Pb and Zn.
PC1 and PC2 exhibited a similar spatial distribution to that
of their own members. For Cu, 11.2% of the lake, in the
central part of the western lake and the eastern part of east-
ern lake, had a high ecological risk. For Pb, 85% the lake
(i.e., in nearly entire lake), had a high risk. For Zn, 25% of
the lake, mainly in the eastern lake, had a high ecological
risk. These results may provide useful information for pol-
lution control and policy making about this lake.
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