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ABSTRACT
With the development of industries, the problem of environmental pollution caused by the massive
discharge of sewage is becoming more and more serious, which has gained increasing attention of
people. In order to solve the problem of drastic change of water quality and dissolved oxygen
concentration in wastewater discharge, activated sludge method was used to deal with the discharge
of wastewater and the neural network control algorithm was used to model and control the wastewater
treatment process in this study. Besides, the neural network predictive control algorithm was proposed
to control the concentration of nitrate nitrogen. Through the simulation of the sewage treatment
process, it is found that the method can quickly and accurately achieve the desired requirements of
the nitrate nitrogen and realize the effective sewage treatment.
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INTRODUCTION

Since the 21st century, the discharge of a large amount of
industrial wastewater and domestic sewage has caused seri-
ous environmental pollution and shortage of water resources.
Hence, the purification and recycling of sewage water is
very important for industrial production and people’s daily
life. Abrahams et al. (2017) designed the principle of perpe-
tuity to create a water purification and harvesting system
that can collect wastewater and convert it to productive
wetlands, eliminate the need for non-renewable energy in
water purification and make biodiversity, flood resilience
and yield increase. Pronk et al. (2015) studied the aerobic
granular sludge technology to treat domestic sewage. Ex-
periments showed that the maximum volumetric conver-
sion rate of phosphorus and nitrogen was greatly increased
while the energy consumption was reduced, suggesting that
the technology could realize effective sewage treatment. In
this paper, the process of wastewater treatment with this
method was studied and modelled, and a neutral network
control algorithm was proposed to control dissolved oxy-
gen and nitrate nitrogen in wastewater. The simulation soft-
ware was used to simulate the wastewater treatment process
and the results showed that this method could effectively
treat sewage and provide reference for the development of
sewage treatment.

MODELLING OF SEWAGE TREATMENT PROCESS

BSM1 is a good biochemical simulation model for the treat-
ment of wastewater with activated sludge process, in which

many biochemical reaction equations and biochemical re-
action parameters as well as evaluation criteria of controller
and control performance are involved (Crisan et al. 2015).
BSM1 model is simple and practical in the process simula-
tion of sewage treatment. Different control strategies can be
applied to this model, and then the same performance evalu-
ation criterion can be used to evaluate the advantages and
disadvantages of the control strategy.

BSM1 model is mainly composed of 1 secondary sedi-
mentation tank and 5 activated sludge reaction tanks (of
which 2 are anoxic tanks and 3 are aerobic tanks). The BSM1
sewage treatment process model is shown in Fig. 1.

As there are many impurities, sand and trace elements in
the actual sewage treatment process, we only consider the
components with large content. The components in the sew-
age treatment process are divided into the following 13 spe-
cies: soluble inert organic matter W

I
, mechanism to be bio-

degraded W
W
, particulate inert organic matter M

I
, slow bio-

degradable mechanism M
S
, active heterotrophic organism

M
B,H

, active autotrophic organism M
B,A

, granular products
of biological corruption M

P
, dissolved oxygen DO, nitrate

nitrogen W
NO

, ammonia nitrogen W
NH

, soluble biodegrad-
able organic matter W

ND
, granular biodegradable organic

nitrogen M
ND

 and alkalinity W
ALK

.

Activated sludge sewage treatment process is a bio-
chemical reaction process, during which various biochemi-
cal reactions occur, including carbon oxidation process, pre-
denitrification process and nitrification process (Hoang et
al. 2015).
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Biochemical pool reaction: The biochemical reaction in
the biochemical reaction pool is simulated by the ASM1
model (Mohamadi et al. 2015). The biochemical reactions
in the sewage treatment process can be divided into eight
processes, including microbial growth, attenuation and hy-
drolysis process, which can be expressed in the following
equations:

The aerobic growth rate of heterotrophic bacteria g = 1 is:
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The anoxia growth rate of heterotrophic bacteria g = 2 is:
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The aerobic growth rate of autotrophic bacterium g = 3 is:
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The decay rate of heterotrophic bacterium g = 4 is:

ABH Mbv ,4          ...(4)

The decay rate of autotrophic bacterium g = 5 is:

ABAMbv ,5          ...(5)

The ammonia reaction rate of soluble organic nitrogen is:

HBNDa MWkv ,6          ...(6)

The hydrolysis rate of slow biodegradable organic matter
is:
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The hydrolysis rate of slow biodegradable organic nitrogen
is:

)/(78 WND MMtv          ...(8)

Where, K
O,H

 refers to the aerobic respiration saturation
coefficient of heterotrophic bacterium, K

NO
 refers to the ni-

trate nitrogen respiration saturation coefficient of hetero-
trophic bacterium, 

i
 refers to the heterotrophic bacteria

Fig. 1: BSM1 model.
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growth correction factor under hypoxic conditions, 
h
 re-

fers to the hydrolysis correction factor in hypoxic environ-
ment, M

W
 refers to the heterotrophic bacteria growth and

substrate utilization saturation coefficient and µ
A
 refers to

the maximum ratio increase rate of autotrophic bacterium.

The material balance equation for each component is as
follows:

The equation for reaction pool k = 1 is:

)(1
111100

1

1 ZQVrZQZQZQ
Vdt

dZ
rraa 

        ...(9)

01 QQQQ ra        ...(10)

The equation for reaction pool k=2, 3, 4, 5 is:

)(1
11 kkkkkk

k

k ZQVrZQ
Vdt

dZ
        ...(11)

1 kk QQ       ...(12)

Q
a
 refers to internal quantity of reflux, Q

r
 refers to exter-

nal quantity of reflux, Q
0
 refers to the quantity of reflux

entering water, Z
0
 refers to concentration of water compo-

nents, Z
a
 refers to concentration of components in the inter-

nal reflux nitrifying solution and Z
r
 refers to concentration

of components in the sludge reflux.

Secondary sedimentation tank: Second sedimentation tank
has 10 layers and the sixth layer is the water entering layer,
without biochemical reactions (Malczewska et al. 2017). It
has a cross-sectional area of 750 m2 and a volume of 3750
m3, with a height of each layer of 0.5 m. There are many
insoluble suspended particles in the sewage in the sink pool,
which will go down by the effect of gravity. The rate for-
mula is as follows:
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Where, fnW MfM min , 
0v refers to the maximum pre-

cipitation velocity, v
0
 refers to the maximum filtration pre-

cipitation speed, 
h
 and 

p
 refer to precipitation parameters

in the obstruction zone and the condensation zone and f
nW

refers to the non-sediment fraction.

The mass average equation of the sludge in each layer of
the secondary settling tank is as follows:

When the number of water entering layer is c = 6:

c
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When c = 10:
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When c = 2, 3, 4, 5:
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When c = 7, 8, 9:
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Fig. 2: Predictive control structure.
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NITRATE NITROGEN CONTROLLER BASED ON
NEURAL NETWORK CONTROL ALGORITHM

According to the above model needs, this paper uses a pre-
dictive control method to establish a neural network to con-
trol the W

W
 concentration in the first reaction tank.

Predictive control principle: Predictive control is a new
type of computer-based control algorithm used in industry.
It mainly includes prediction model, rolling optimization
and feedback correction (Aras et al. 2015). The structure of
predictive control is as follows:

Prediction model (Fig. 2) is a control method based on
neural network model, which can predict future output data
through historical input and output data and future input
data (Ma et al. 2017). The model is used to predict future
behaviour, through which the future control strategy can be
designed based on the predicted output.

There is a great difference between predictive control
and traditional control because that predictive control can
achieve the rolling optimization within a limited period of
time (Raszmann et al. 2017). At each sampling, optimizing
performance metrics can only optimize the limited time
ahead for this moment, and optimization must move for-
ward in the next moment. Therefore, the optimization in
predictive control is not completed in one time, but is ac-
complished by rolling.

Neural network predictive control algorithm is a closed-
loop control algorithm. In the process of optimization, all
optimization strategies need to be calculated using the pre-
diction model (Zhakatayev et al. 2017). In order to prevent
the prediction model from mismatch and interference, it is
necessary to detect the actual output at the next moment
after the control effect is achieved, record the data, and cor-
rect and optimize it with the model.

Prediction model of neural network control algorithm:

The prediction model of neural network control algorithm
is built based on the neural network modelling capability.
The performance indicators are used to determine the con-
trol information for each time period and the historical in-
put and output information is used to express the future
output information through the neural network prediction
model, with the equation as follows:

  ),1(),()1(  ddfy NN 

)1(,),(  nyy        ...(19)

Where, d refers to system delay,  refers to the selected
number of historical control information, n refers to the se-
lected historical output information and  refers to number
of iterations.

Calculation method of neural network control: In predic-
tive control, each control function is accomplished by
optimizing a performance index. The performance indica-
tors selected in this paper are as below:

   22 )1()()()(   dydrT p

      ...(20)

Where, )( dr   refers to the reference value of future
output, )( dy p   refers to the predicted value of future
output and )1(   refers to the control effect of the previ-
ous moment. Hence, the control function )(  that needs
to be input at this moment is obtained by solving the mini-
mum for j.
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      ...(21)

)1()()(  dedydy p         ...(22)

Where, )( dy p   refers to the predicted correction value
and )( dy   refers to the predicted value of the model

Fig. 3: Predictive control structure of wastewater treatment process.
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which can be solved with the prediction model. When solv-
ing )( , the value of )( is required. Therefore, the

)(  in the equation should be separated.

As the neural network structure of the neural network
control algorithm is complicated and )( is difficult to be
separated, special algorithm is required. In this study, we
adopt the optimization seeking method.

The optimization method is a method of one-dimen-
sional search on the )( value space. According to the
rules, select two points in the value space to be brought into
the calculation, and determine the value space through
whether there is an optimal value in the value space
(Shrestha et al. 2017). This step is repeated until the space is
small enough and the median value in the space is selected
to be the optimal output of )( .

Controller design: In the practical application of the con-
troller, we also need to design its control strategy and as-
sign the reasonable output and input to the corresponding
locations. The input signals of the PID controller based on
neural network are )( , )1(   , )1( NOW  and

)(NOW . Where, )(  refers to the increment of the con-
trol effect in this period, )1(    refers to the increment of
the control effect in last period, )(NOW refers to the con-
centration of nitrate nitrogen in sewage in this period and

)1( NOW  refers to the concentration of nitrate nitrogen in
sewage in last period. The predicted NO concentration in
the nth period is expressed by ( )NOW n .

In addition, we added the gradient descent method to
the prediction output and actual output of the network neu-
ral to correct the error value (Li et al. 2017). After the predic-
tion of the NO concentration, the error compensation is made
according to the prediction error of the previous time, and
the value after compensation is taken as the actual predic-
tion value. Then the actual predicted value is substituted

into the above formula by the controller to calculate the
performance index value so as to minimize the value of J in
the above formula to determine the best control signal and
introduce this new control function into the system. The
design structure of the controller is shown in Fig. 3.

RESULTS

Effluent nitrate nitrogen content: Both the controller
designed in this paper and the traditional controller are
tested. A fixed value of the water inflow and was set and the
average nitrate nitrogen concentration in the wastewater
was calculated every 15 minutes. Both the controllers were
applied to the BSM1 model, which calculated the mean
value of the total nitrogen content. The experiment lasted
six days and the results are presented in Table 1.

As given in Table 1, after using neural network predic-
tion controller, the average concentration of nitrate nitro-
gen was lower than that of traditional controller. In addi-
tion, due to the hydrolysis of the nitrogenous material and
the conversion of ammonia nitrogen to nitrate nitrogen in
the BSM1 model, the nitrate nitrogen content increased a
lot, suggesting that good effluent quality could be ob-
tained after using the controller in the sewage treatment
process.

Effluent control effect: In order to further test the control
effect of the controllers, we performed set value optimiza-
tion and tracking control on them, with the results given in
Table 2.

As shown in Table 2, the stability of the neural network
prediction controller was higher than the traditional con-
troller. The integrated absolute error and maximum error as
well as the aeration consumption of the neural network pre-
diction controller were smaller than the traditional control-
ler. Therefore, the controller designed in this paper had bet-

Table 1: The total nitrogen content of the two controllers in the BSM1 model.

BSM1 Traditional Neural network prediction
controller controller

Mean concentration of nitrate nitrogen (mg/L) 3.10 1.25 0.91
Mean value of total nitrogen content (mg/L) 1029.33 735.12 729.3

Table 2: Control effect of the two controllers.

Neural network predictive Traditional controller
controller

Stability 4.88×10-3 1.26×10-2

Integrated absolute error 5.04×10-2 8.15×10-2

Maximum error 1.46×10-1 3.76×10-1

Aeration consumption -8.7% -12.6%
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ter control effect, and its decoupling ability was better than
that of traditional controller.

DISCUSSION AND CONCLUSION

In recent years, the discharge of sewage has caused a great
burden on the environment, and research on wastewater treat-
ment technology has become very important. Centered on
sewage treatment technology, this paper described the acti-
vated sludge method, established a model of activated
sludge method, and put forward a neural network control
algorithm, designed a neural network predictive controller,
studied the role of the controller in removing nitrate nitro-
gen in wastewater. The results showed that the controller
had better stability, less error and less energy consumption,
but better effluent water quality compared with the tradi-
tional controller and could meet the requirements of sew-
age treatment.
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