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ABSTRACT
The Intergovernmental Panel on Climate Change (IPCC) concluded that there is a consensus that the
increase in atmospheric greenhouse gases will result in climate change, which will cause the sea
level to rise, increase frequency of extreme climatic events such as intense storms, heavy rainfall
events and droughts. This will increase the frequency of climate-related hazards, causing loss of life,
social disruption and economic hardships. There is less consensus on the magnitude of change of
climatic variables, nonetheless several studies have shown that climate change will have an impact on
the availability and demand for water resources. Southern Africa lies in one of the regions of the world
that is most susceptible to climate variability and change. In southern Africa, climate change is likely to
affect nearly every aspect of human well-being, from agricultural productivity and energy use to flood
control, municipal and industrial water supply as well as wildlife management, since the region is
characterized by highly spatial and temporally variable rainfall, and in some cases, scarce water
resources. This study presents the future change projection in precipitation under RCP2.6, RCP4.5
and RCP8.5 scenarios of the CanESM2 outputs using the Statistical Downscaling Model (SDSM) for 50
stations in Zambeze River basin during the two future periods: near future (2031-2060) and far future
(2071-2100). For assessment of climate change, the baseline period (1979-2013) was partitioned into
two periods for SDSM calibration (1979-1996) and validation (1997-2013). The results show that
SDSM was not a very robust method for the simulation of precipitation for this study area, the model
could not replicate observed precipitation very well. This is due to its conditional nature and high
variability in space. The results also showed that there is a decrease in monthly precipitation during
wet period (October-March) and an increase during the dry period (April-September). The upward
monthly increase in projected precipitation expected is in August (300%, 325%) with RCP4.5 and
maximum decrease in March (38%) with RCP4.5 for all scenarios for NF and FF respectively, and the
projected annual precipitation is expected to decrease with time for all scenarios. It was observed that
the maximum decrease will range from 7-21.8% for near future (NF) and 2-21% for far future (FF).
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INTRODUCTION

Anthropogenic greenhouse gas emissions have increased
since the pre-industrial era, driven largely by economic and
population growth, and are now at record higher than ever.
Their effects, together with those of other anthropogenic
drivers, have been detected throughout the climatic system
and are extremely likely to have been the dominant cause
of the observed warming since the mid-20th century (IPCC
2014a). There is a direct correlation between  global warm-
ing and precipitation (Res & Trenberth 2011). Increased
heating leads to greater evaporation, and thus surface dry-
ing, thereby increasing the intensity and duration of
droughts. With medium confidence, the study conducted
by IPCC (2014b) indicated that changes in rainfall patterns

or melting snow and ice have changed hydrological sys-
tems in many regions including Africa. This has affected
water resources in terms of quality and quantity (Solomon
et al. 2007). Africa is highly vulnerable to the impacts of
climate change and numerous climate change models predict
that the continent’s weather patterns will become more
variable, and extreme weather events are expected to be
more frequent and severe, with increasing risk to health and
life (IPCC 2014 and Solomon et al. 2007). By 2050, across
Zambeze River Basin there is an expected 10-25% increase
in evaporation and 10-15% reduction in rainfall, relative to
the baseline (1961-1990). Overall, the Zambeze will be both
drier and more variable, experiencing more prolonged
drought periods and more extreme floods (Beilfuss 2012).
The Zambeze Basin is already experiencing drastic changes
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to its climate. In recent years the annual rainfall in the re-
gion decreased considerably, which in turn affected the an-
nual flow levels of the Zambeze. Over 128 million inhabit-
ants that are part of the Zambeze River Basin are dependent
on this “Great River” directly or indirectly as a source of
food and water. In total, the countries which constitutes the
Zambeze Basin (excluding Tanzania) have 2.17 million km2

of agricultural land, of which just 2,02,900 is arable. Mo-
zambique holds the largest amount of agricultural land in
relation to total land area. Nevertheless, because of increased
agricultural land, there is also an increased need for irriga-
tion to sustain agricultural production and mitigate the vari-
ability of rainfall. In the entire basin, agriculture is the domi-
nating consumer of water. According to the Food and Agri-
culture Organization, Botswana uses just 41 per cent of its
water resources for agriculture, while 18 per cent go into
mining and energy production. In comparison, Mozambique,
Namibia, Zambia and Zimbabwe use over 70 per cent of
their freshwater resources for agriculture. Mozambique, in
particular, uses 87 per cent of its water for agriculture, while
just 2 per cent goes to the industrial sector. Water allocation
issues, population and economic growth, the expansion of
irrigated agriculture water transfer and climate change are
expected to cause use of water runoff to rise to 40 percent by
2025 (Swain et al. 2012). The Zambeze runoff is highly
sensitive to variations in climate, as small changes in rain-
fall produce large changes in runoff. The dependency on
water for food production in the basin area affirms concerns
that the Zambeze Basin will be strongly affected by climate
change (Beilfuss 2012). The hydrology of the basin is very
important for hydropower generation, water supply, irriga-
tion and ecological systems. These water dependent sectors
are vulnerable to climate change impacts, thus, local cli-
mate change scenarios are important for planning and man-

agement of water supply and demand. This study aimed at
generating scenarios of climate change for precipitation in
the Zambeze basin based on GCMs outputs (CanESM2). It
will help to provide appropriate information so as to take
action for minimizing the negative impacts of climate change
in the basin. The SDSM downscaling was done using future
emission scenarios of RCP2.6, RCP4.5 and RCP8.5 from
CanESM2 GCM outputs.

STUDY AREA  AND DATA

Study area: The Zambeze River Basin is the fourth largest
river basin in Africa and the largest river basin in the
Southern African Development Community (SADC) region
with a total drainage area of approximately 1.34 million.
The main stream, with a total length of 3,000 km, originates
from the Kalene Hills in northwest Zambia at an altitude of
1,500 m and flows eastwards to the Indian Ocean. The river
has three distinct stretches: the upper Zambeze from its
source to Victoria Falls, the middle Zambeze from Victoria
Falls to Cahora Bassa and the lower Zambeze from Cahora
Bassa to the delta where the study area is located. It lies
between latitudes 10° and 20° south, and between longitudes
20° and 37° east (Fig. 1). The climate of the basin is largely
controlled by the movement of air-masses associated with
the Inter-Tropical Convergence Zone (ITCZ). Rainfall oc-
curs predominantly during the summer (November to
March), while the winter months (April to October) are usu-
ally dry. The average annual rainfall over the basin is 990
millimetres (mm), varying from 1,200 mm y-1 in the north-
ern parts to 700 mm y-1 in the southern and southwestern
parts of the basin according World Bank (WB 2010). The
Zambeze River is shared by eight countries (Angola, Bot-
swana, Malawi, Mozambique, Namibia, Tanzania, Zambia
and Zimbabwe), and has an estimated population of 30 mil-

 

Fig. 1: Overview of Zambeze catchment area.
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lion people (Pasanisi et al. 2016). However, rainfall is char-
acterized by considerable spatial and temporal variation
throughout the basin. Droughts of several years’ duration
have been recorded almost every decade (Kane 2009). Mean
discharge at the outlet of the basin is estimated to be ap-
proximately 3600, but discharge shows large seasonal and
intra-annual variations strongly controlled by seasonality
in precipitation (Kling et al. 2014).

The historical rainfall data for the study were obtained
from the Global Weather Data for SWAT website (https://
globalweather.tamu.edu/). The daily observed precipitations
of 50 stations with continuous dataset for downscaling were
used. The study area was divided into 6 clusters (A, B, C, D,
E and F) according to the station elevation (Fig. 2). Where,
A is lowest and F the highest elevation (Table 1), having
record lengths of 34 years for the period 1980-2013.

The most commonly used predictor variables for the NCEP
and CanESM2 GCM experiments are listed in Table 2. These
were used as inputs into the SDSM model, and future cli-
mate scenarios data were obtained as output from the sec-
ond generation Canadian Earth System Model (CanESM2)
developed by Canadian Centre for Climate Modelling and
Analysis (CCCMA) of Environment, Canada. The grid cell
size is uniform along the longitude with horizontal resolu-
tion of 2.8° and nearly uniform along the latitude of roughly
2.8°. The CanESM2 outputs were downloaded for three dif-
ferent climate scenarios within Representative Concentra-
tion Pathways RCP2.6, RCP4.5 and RCP8.5, which were
adopted in this study.

METHODOLOGY

Downscaling of climate data to local level was done using
SDSM model, which was downloaded at no cost from http:/
/www.sdsm.org.uk. Since most of the time, observed mete-
orological data are not 100% accurate, before use, quality

control was carried out in order to enhance the quality of
model output. The selection of predictor variables was based
on the strength of correlation between sets of predictors and
single predictand, e.g.  precipitation (Table 3). The 34 years
observed data were divided into two periods, the first half
(1980-1996) 17 years of daily data were used for model
calibration and the second half (1997-2013) were used for
model validation. The weather generator operation was used
to produce daily synthetic data for the historical time pe-
riod by using calibration output and observed NCEP re-
analysed atmospheric variables (Wilby & Dawson 2007).
The last step involved scenario generator, which is the same
as that of the weather generator, considering that both gen-
erate synthetic data. However, the major difference between
the two being the time period for synthetic data generated.
This was done by changing the source data directory of
predictor variables and by specifying model time period
during the model setting. Future model change in climate
was calculated based on the climatological baseline period
as a reference period (IPCC 2001).

Statistic downscaling model: The ability of the GCMs to
accurately simulate extreme precipitation distributions and
trends is of great importance. Generally, studies on precipi-
tation characteristics from climate models have concluded
that simulated daily precipitation tends to occur more
frequently, but is less intense than observed precipitation
(Dai 2006). While these models have improved in terms of
accuracy of simulation at a large-scale behaviour of the at-
mosphere, there are still difficulties in capturing small-scale
intermittent processes, for example, local precipitation
(Tryhorn & Degaetano 2011). To bridge the gap between
the coarse spatial resolution of climate model output and
the need for weather information at a higher resolution,
downscaling methods have been developed. Downscaling
is a process of transforming this coarse information to a
finer spatial resolution (Tryhorn & Degaetano 2011). Among
downscaling methods, statistical methods are commonly
used because they are easy to run and SDSM model is one of
the downscaling techniques employed today. It provides a
reliable correlation of observational data (predictand) and
large-scale daily GCMs climate variables (predictors) using
multiple linear regression techniques. The statistical regres-
sion is run between predictors and predictand to make spa-
tial scale reduction of the climate data by applying the
monthly explained variance and partial correlation coeffi-
cient throughout predictand. SDSM model has been devel-
oped by Robert L. Wilby and Christian W. Dawson (Wilby
2002). The detailed description of the mathematical and
statistical approach of SDSM was explained by Wilby &
Dawson (2007) and Wilby (2002). SDSM performance is
estimated by validation of calibration result using some

Fig. 2: Study area in Zambeze River Basin.
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Table 1: List of meteorological stations.

No.  Code  Lat.(°) Long. (°) Elevation Cluster No. Code Lat.(°) Long.(°) Elevation Cluster
(masl) (masl)

1 180347 -18 34.7 142 A      26 158344 -15.8 34.4 630 C      
2 164350 -16.4 35 52 27 145331 -14.5 33.1 760
3 170347 -17 34.7 195 28 151325 -15.1 32.5 577
4 173350 -17.3 35 43 29 167325 -16.7 32.5 578
5 176353 -17.6 35.3 39 30 173328 -16.1 33.1 530
6 161338 -16.1 33.8 238 31 155341 -15.5 34.1 686
7 167331 -16.7 33.1 246 32 161356 -16.1 35.6 648
8 176347 -17.6 34.7 187 33 155306 -15.5 30.6 590
9 161347 -16.1 34.7 187 34 164300 -16.4 30 562
10 167353 -16.7 35.3 42 35 173334 -17.3 33.4 624
11 167338 -16.7 33.8 308 B        36 170319 -17 31.9 755
12 148353 -14.8 35.3 482 37 145322 -14.5 32.2 914 D  
13 170341 -17 34.1 346 38 151316 -15.1 31.6 840
14 176341 -17.6 34.1 493 39 158350 -15.8 35 947
15 161306 -16.1 30.6 376 40 167316 -16.7 31.6 935
16 158319 -15.8 31.9 343 41 170303 -17 30.3 1112 E   
17 161331 -16.1 33.1 365 42 173319 -17.3 31.9 1105
18 155325 -15.5 32.5 415 43 148341 -14.8 34.1 1000
19 164313 -16.4 31.3 424 44 176322 -17.6 32.2 1203
20 164344 -16.4 34.4 289 45 151347 -15.1 34.7 1303
21 170356 -17 35.6 324 46 167306 -16.7 30.6 1077
22 158309 -15.8 30.9 331 47 180328 -18 32.8 1664 F  
23 151331 -15.1 33.1 493 48 180316 -18 31.6 1345
24 155334 -15.5 33.4 426 49 170309 -17 30.9 1323
25 161322 -16.1 32.2 658 C 50 176309 -17.6 30.9 1407

Table 2: Candidates of atmospheric variables for predictors.

No. Daily predictor variable Code No. Daily variable Code

1 Mean temperature temp. 14 Near surface specific humidity shum
2 Surface airflow strength p_f 15 500 hPa airflow velocity p5_f
3 Surface zonal velocity p_u 16 500 hPa Vorticity p5_z
4 Surface meridional velocity p_v 17 500 hPa Zonal velocity p5_u
5 Surface vorticity p_z 18 500 hPa Meridional velocity p5_v
6 Surface wind direction p_th 19 500 hPa Wind direction p5_th
7 Surface divergence p_zh 20 500 hPa Divergence p5_zh
8 Mean sea level pressure mslp 21 850 hPa airflow strength p8_f
9 500 hPageopotential height p500 22 850 hPa zonal velocity p8_u
10 850 hPageopotential height p850 23 850 hPa meridional velocity p8_v
11 Near surface relative humidity rhum 24 850 hPavorticity p8_z
12 Relative humidity at 500 hPa height r500 25 850 hPa wind direction p8th
13 Relative humidity at 850 hPa height r850 26 850 hPa divergence p8zh

parameters such as mean monthly precipitation. The cali-
bration is conducted between selected large-scale NCEP
predictor variables and the observed precipitation to quan-
tify the accuracy of data modelled. During calibration, mean
of downscaled monthly precipitation are adjusted by bias
correction to enable the model to replicate the observed
data (Saraf & Regulwar 2016, Teutschbein & Seibert 2012).

Re-analysed atmospheric dataset obtained from National
Center for Environmental Prediction (NCEP) together with

observed data were split into two and used for model cali-
bration, and the remaining datasets were employed for model
validation in order to check the statistical downscaled model
output from calibration. Both the CanESM2 output and
NCEP/NCAR were downloaded from Canadian Climate Data
and Scenarios website (http://climate-scenarios.canada.ca/
?page=pred-canesm2). The data were downloaded by enter-
ing latitude and longitude of the study area, with a large-
scale predictor at a spatial resolution of 2.5° longitude and
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2.5° latitude. Moreover, variables representing the current
climatic condition from 1961 to 2005 were obtained from
the National Center for Environmental Prediction and Na-
tional Center of Atmospheric Research (NCEP/NCAR).
These predictor variables were used in the downscaling proc-
ess. The CanESM2 predicator scenarios within Representa-
tive Concentration Pathway (RCP 2.6, RCP 4.5 and RCP
8.5) were used for future generation. The future scenario
analyses were divided in two periods (2031-2060) near fu-
ture (NF) and (2071-2100) far future (FF) and were com-
pared with the baseline period.

RESULTS AND DISCUSSION

Selection of Predictor Variables

The best correlated predictor variables were selected for each
station’s predictands. These variables were then used for
calibration of the SDSM (Wilby et al. 2002). The strongest
correlation between single predictand and set of predictors
was identified. According to Table 3, for precipitation,

“mslp” was dominating predictor. However, for the case of
precipitation, the correlation (partial r) for individual
predictand and a set of predictors was not satisfactory (it is
satisfactory when partial r is ±1). This is due to its condi-
tional behaviour of precipitation whereby it is an interme-
diate process between the regional forcing and local weather
(e.g., precipitation amount depends on wet/dry-day occur-
rence which also depends on regional scale predictors such
as humidity and atmospheric pressure) (Wilby & Dawson
2007). Similar results were observed by other scholars
(Gulacha & Mulungu 2016).

Calibration and Validation

Similar to most of the applications of SDSM reported, the
model was calibrated and validated separately (Huth 1999,
Rashid et al. 2014, Wilby 2002, 1997). The performance of
models in simulating specific characteristics of any vari-
able such as precipitation is generally validated by compar-
ing the model simulations with the observed data either
based on grid values (Mehran et al. 2015) or area averaged
values (Dike et al. 2015). In this study, the 34 years baseline
(observed) data were used for calibration (1980-1996) and
validation (1997-2013) of SDSM, and the spatial and
temporal standard error (SE) of predictions and R square
(R2) were used to assess the relative comparison in results of
multivariate regression models for each station. In addition,
comparing the calibration and validation periods, it is clear
that the validation period (Table 4) has better SE and (R2),
and therefore the performance of  SDSM can be considered
satisfactory for simulation and projection purposes.

Table 3: Selected predictor variables for the predictands.

                                               Station A                                             Station B                                           Station C
Predictand Predictors Partial r p-value Predictors Partial r p-value Predictors Partial r p-value

Precipitation mslp -0.162 0.0000 mslp -0.167 0.0000 mslp -0.110 0.0000
p5_f 0.010 0.4162 p8_v 0.027 0.0625 p_z 0.020 0.1687
p8_z 0.037 0.0085 p8_z 0.052 0.0001 p5_f 0.026 0.074
prcp 0.164 0.0000 prcp 0.149 0.0000 p8_f 0.014 0.3163
ptmp -0.086 0.0000 ptmp -0.101 0.0000 prcp 0.134 0.0000
- - - - - - ptmp -0.064 0.0000

                     Station D                                              Station E                                            Station F
Predictors Partial r p-value Predictors Partial r p-value Predictors Partial r p-value

mslp -0.156 0.0000 mslp -0.176 0.0000 mslp 0.020 0.1578
p_th -0.013 0.3312 p_zh 0.050 0.0003 p_u -0.017 0.2272
P5_zh 0.030 0.356 p8_z 0.053 0.0001 p_th -0.024 0.0921
p8_v 0.028 0.051 prcp 0.198 0.0000 P5_v 0.020 0.1616
p8_z 0.027 0.04221 ptmp -0.070 0.0000 P8_f -0.028 0.0457
prcp 0.174 0.0000 - - - p850 -0.040 0.0035
ptmp -0.80 0.0000 - - - prcp -0.001 0.5631
- - - - - - shum 0.109 0.0000

Table 4: SDSM performance during the calibration (1979-1996) and
validation (1997-2013).

Station Prec. (R2 %) Prec. (SE)

A 13-58 0.5-3.2
B 13-54 0.4-2.7
C 13-56 0.4-2.7
D 17-59 0.4-3.3
E 15-62 0.4-2.5
F 13-58 0.5-3.3
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Similar to most previous studies (Table 5) the calibra-
tion outcomes showed that the results of this study are
equally of a low performance. This may point to the fact
that SDSM may not be the right downscaling model for
precipitation in the study area. However, this is subject to
the use of longer calibration period (25 years) to account for
some of the variability in the observed data (Souvignet et
al. 2010).

Fig. 3 illustrate the observed and modelled precipita-
tion at the cluster A in calibration step (1980-1996) and
validation step (1997-2013). The calibration  results of this
study showed that the SDSM may not be the right
downscaling model for precipitation in this study because
SDSM has no higher accuracy in precipitation, but can be
adjusted by bias correction to force the model to replicate
the observed data (Saraf & Regulwar 2016).

It is difficult to develop perfect multiple regression equa-
tion for precipitation due to its conditional behaviour, be-
cause there is an intermediate process between regional forc-
ing and local weather (Wilby & Dawson 2004). Downscaling
for precipitation is more problematic than temperature

(Hassan & Harun 2011). Figs. 3a and 3b show the compari-
son of observed and simulated results during the calibra-
tion and validation period, and Fig. 3c depicts the GCM
historical time series compared with bias corrected one. The
analysis was carried out by comparing the generated twenty
synthetic weather points with the observed weather data
(cluster A) and then the historical GCM observed were com-
pared with bias corrected. The seasonal variation of simu-
lated precipitation presented a trend similar to that of the
observed precipitation, but during calibration, there was an
overestimation in observed precipitation during all months,
except April and May which were underestimated. This in-
dicated the poor performance of SDSM in simulating the
peak rainfall in the study area. For the validation step the
observed precipitation was well simulated during the pe-
riod July-December and overestimated for the rest of months.
Corrected GCM historical data were compared to the ob-
served climate data (Fig. 3c), and the results showed that the
bias correction approach eliminated some biases from the
daily time series of downscaled data, and simulations run
with bias-corrected GCM variables fitted better with ob-

 Fig.3: SDSM calibration and validation results.

Table 5: SDSM performer in different studies.

Prec (R2 %) Study area References

28 Toronto Wilby et al. (2002)
38 Upper Blue Nile basin, Ethiop Bekele (2009)
13 - 29 Upper Tiber basin central, Italy Fiseha et al. (2012)
15 - 45 Mountainous regions of Japan Wilby et al. (1998)
6 - 10 Greater Montreal region Nguyen et al. (2004)
5 - 13 Upper-Elqui watershed, Chile Souvignet et al. (2010)
11-35 Wami-Ruvu River Basin (WRRB) Gulacha&Mulungu (2016)
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Fig. 4: Monthly precipitation changes during FF (far future) period.

...Cont. Fig. 4
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served values than simulations with uncorrected GCM cli-
mate variables, moreover, the former had more narrower
variability bounds.

Projected Monthly Precipitation

Projected intra-annual variability of precipitation:
Monthly statistics analyses are categorized as the suitable
form of evaluating the characteristics of change in rainfall
patterns (Gulacha & Mulungu 2016). The intra-annual vari-
ability results of precipitation were obtained by comparing
the future projection with the baseline period and are pre-
sented in Fig. 4.

The upward change (%) of precipitation in different
months and under different scenarios is presented. It can be
found from Fig. 4(a) through to Fig. 4(f) that the difference
in increasing and decreasing precipitation change for NF
are presented as follows: 273 ~ -13.62%, 299 ~ -13.16%,
247.7 ~ -14.26% for cluster A (Fig. 4a); 195.13~ -23.77%,
190.12 ~ -28.91%, 171.34 ~ -22.03% for cluster B (Fig. 4b);
131.58~ -15.50%, 128.96 ~ -21.94%, 108.20 ~ -17.72% for
cluster C (Fig. 4c); 168.83 ~ -16.74%, 144.84 ~ -15.45%,
140.10 ~ -12.40%  for cluster D (Fig. 4d); 164.61 ~ -4.87%,
169.01 ~ -11.50%, 154.81 ~ -2.17% for cluster E (Fig. 4e);
and 291.23 ~ -22.41%, 288.24 ~ -36.80%, 216.76 ~ -25.35%
for cluster F (Fig. 4f) under RCP2.6, RCP4.5, RCP8.5, re-
spectively. The greatest monthly increase and decrease
(291.23% and -36.80%, respectively) is observed in cluster
F in the month of August and March for RCP2.6 and RCP
4.5 respectively. In the case of this study, the change of
291.23% in the month of August represent a 5 mm change.

For this month, it is normal because during this period (dry
period) normally there is no precipitation, the maximum
precipitation observed in this month during the baseline
period (1980-2013) was 12 mm.

For example, (Kane 2009) showed that annual rainfall
in southern Africa had considerable year-to-year fluctua-
tions (50% to 200% of the mean), although most studies
(Andersson et al. 2009, Hudson & Jones 2002) indicate fu-
ture reduction in rainfall of up to 50%. Projected future
changes in mean seasonal rainfall in southern Africa are less
well defined (Wfp 2015).

Comparatively, from Fig. 4(a) to Fig. 4(f) there is a simi-
lar range of changes for both NF and FF for all six clusters
and scenarios. Generally, a decrease in precipitation is ob-
served during the wet period (October-March) and an in-
crease during the dry period (April- September).

Projected Mean Annual Variability of Precipitation

Fig. 5 shows the average annual precipitation change dur-
ing NF and FF for RCP2.6, RCP4.5 and RCP8.5 scenarios. It
clearly shows that the projected annual precipitation will
decrease with time for all scenarios and in all clusters (A, B,
C, D, E, and F). RCP4.5 and RCP8.5 exhibit the highest
decrease -21.65% for NF and -22.12% for FF, respectively.

Similar result was presented by Beilfuss (2012) which
indicated that the Zambeze River Basin is expected to be-
come hotter and drier with 10-15% reduction in rainfall.
Besides, many climate change models, predict a 5 to 15%
decrease of growing season rainfall in southern Africa (IPCC

Fig. 5: Annual precipitation changes during NF and FF.
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2001). Yanda et al. (2011) projected a 3-23% decrease in
rainfall attributed to climate change in southern Africa. Pro-
jection in precipitation over Europe indicate an increase in
northern Europe (5 to 20%) and a decrease (-5 to -30 %) in
southern Europe for the period 2080-2099 with the inter-
mediate IPCC SRES A1B (Raisanen et al. 2004). According
to Ragab (2004) the annual average rainfall decrease is ex-
pected in southern Africa (Angola, Namibia, Mozambique,
Zimbabwe, Zambia, Botswana and South Africa) ranges from
5-15% in the south and by 5-10% in the north.

Further, in all the clusters, for both NF and FF there is a
consistent decrease in annual precipitation change, which
applies to all scenarios, except RCP4.5 (FF) that has a slightly
despicable increase. Cluster B shows the largest decrease,
while cluster A shows the smallest decrease and it can also
be ascertained that, there is no significant relationship be-
tween the decrease change and the elevation.

According to Kusangaya et al. (2014), several studies in
South Africa showed that rainfall in the region is character-
ized by high inter-annual variability. Annual rainfall did not
have a clear tendency in the last two or three decades, but
most concur that dry periods in southern Africa have become
longer and more intense (Kusangaya et al. 2014). The basic
conclusion from the analysis of rainfall trends is that changes
in rainfall are subject to considerable uncertainty, regarding
the extent (spatial and temporal) and magnitude of change
(Yanda et al. 2011). Part of the basin will experience increase
in the mean precipitation and another decrease.

CONCLUSIONS

Generally, in this study, SDSM was applied to simulate and
project the future precipitation. The data generated during
validation of SDSM showed that the model was not able to
replicate observed precipitation very well. This is due to its
conditional nature and high variability in space. It has been
shown that there is a decrease in precipitation during wet
period (October-March) and an increase during the dry pe-
riod (April-September). The upward monthly increase in
projected precipitation expected in August (300%, 325%)
with RCP 4.5 and the maximum decrease is recorded in
March (38%) with RCP 4.5 for all scenarios in both NF and
FF respectively. It also clearly shows that the projected
annual precipitation will decrease with time for all scenarios.
Furthermore, it was observed that the maximum decrease
will range from 7-21.8% for NF and 2-21% for FF. The high-
est decrease will be observed with RCP4.5 for NF and
RCP8.5 for FF.
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