The Occurrence of *Bacillus cereus* in the Pink Line Syndrome Infected *Porites lutea* Coral

Muhammad A. Asadi*†, Bambang Semedi*, Muliaawati Handayani*, Feni Iranawati*, Umi Zakiyah** and Mayda Ria*
*Department of Marine Science, Faculty of Fisheries and Marine Science, University of Brawijaya, Malang 65145, Indonesia
**Department of Water Resources Management, Faculty of Fisheries and Marine Science, University of Brawijaya, Malang 65145, Indonesia
†Corresponding author: Muhammad A. Asadi

ABSTRACT

Corals in the genus *Porites* are among the most dominant scleractinian corals in the coral reef ecosystems yet highly vulnerable to climate change impacts and diseases. In the Kondang Merak and Sempu Strait waters of Indian Ocean, it has been reported that more than 45% of the corals were infected with Pink Line Syndrome (PLS). The objectives of this study are to isolate, morphologically and molecularly characterize, and identify the PLS associated bacteria that infected *Porites lutea* coral. The sampling was performed at the Kondang Merak waters in June 2018 by snorkeling during low tide. In order to isolate and purify the dominant bacterial colony, quadrants streak-plating technique was performed using ZoBell marine agar culture media. 16S rRNA sequencing and BLAST homology were performed for the molecular identification of the bacterial colony. Results showed that the bacteria l colony associated with PLS was of *Bacillus cereus*, which was closely related to *Bacillus pseudomycoides*, *Bacillus toyonensis* and *Bacillus thuringensis* with 97% similarity. The occurrence of *B. cereus* bacterium in the PLS infected *P. lutea* demonstrated that this opportunistic pathogen might be responsible for the PLS in the *P. lutea* coral.

INTRODUCTION

Coral reefs are among the most productive and diverse ecosystems on earth, second only to tropical rainforests. They play an important role in providing spawning ground and shelter to a wide range of marine organisms (Veron et al. 2009). Coral reefs also protect shorelines, regulate carbon dioxide, and support local and global economies via fishing, recreation and tourism (Asadi & Andrimida 2017, Elliff & Kikuchi 2017). However, the health of these reefs has been declining over the past 50 years due to accumulation of stresses driven by anthropogenic threats such as destructive fishing practice, oil slicks, sedimentation, and organic pollution (Wear 2016). Moreover, the relentless rise of carbon dioxide induces the increase of sea surface temperature and the decrease of ocean pH, which in turn elevates the collapse of coral reef ecosystems (Asadi & Khoiruddin 2017, Bruno 2013, Orr et al. 2005). These factors trigger coral diseases and subsequently elevate the decline of abundance and diversity of coral reef ecosystems (Caldwell et al. 2016, Wear 2016).

The outbreaks of coral reef diseases and syndromes were initially widespread in the Caribbean, affecting some scleractinian corals. The geographic distribution of coral diseases was then widespread in the Indo-Pacific coral reefs (Weil et al. 2009). In Ryukyu archipelago, pink block disease (PBD) infected *Porites* corals, and was also likely associated with the same disease that affected massive *Porites* in Hawaii (Weil et al. 2012). In Indonesia, the abundance and distribution of white syndrome (WS) and black band diseases (BBD) had been recorded in Kepulauan Seribu Marine National Park (Johan et al. 2015). In Pramuka Island, Jakarta, a total of 61.32% of Fungiidae was infected with coral diseases (Subhan et al. 2011).

Furthermore, study on Kondang Merak waters of Indian Ocean revealed that 47% of *P. lutea* was infected with PLS (Asadi et al. 2017b). It also infected scleractinian corals in many areas from the Caribbean to the Indo-Pacific coral reefs (Ravindran & Raghukumar 2006, Weil et al. 2012). However, the study of PLS associated bacteria is still scarce. Therefore, this study aimed to identify the dominant bacteria associated with PLS in Kondang Merak waters using molecular characterization as well as morphological observation of the bacteria isolates.

MATERIALS AND METHODS

Sampling and description of the study sites: Surveys and
sample collections of *P. lutea* infected with PLS were performed on the Kondang Merak waters (8°23’50.74”S, 112°31’6.00”E), which is located on the southern Malang’s coast of Indian Ocean. The sampling area is a shallow reef flat that is often exposed during low tide. The sample collection was performed using snorkeling in June 2018. The sampling map is presented in Fig. 1.

Furthermore, in brief, fragments of *P. lutea* infected with PLS were carefully separated using a hammer and sterilized chisel and directly placed separately into polyethylene plastic bags filled with sterilized seawater to avoid contact with air. The coral samples were stored in a cooler box containing ice and directly carried to the laboratory for further laboratory experiments.

Bacteria isolation and purification: In the laboratory, the coral fragments were sprayed with autoclaved seawater to remove any material that might attach on the coral surface. The coral tissues that contained PLS were then scraped using an ethanol sterilized scalpel blade. In order to suspend the tissues, each 1 gram of the coral tissues was diluted with 9 mL of sterilized seawater and mixed thoroughly using a vortex mixer. The resultant of PLS infected coral tissues were then fivefold serially diluted. In a triplicate, 500 µL of the resultant was spread on ZoBell 2216E marine agar using quadrants streak-plating technique and incubated for 7 days at 35-37°C. Based on the morphological feature, the dominant colony was selected for bacterial purification using agar slant tubes. The purified colony sample was then incubated for 96 hours at 35-37°C. After the incubation, the colony was harvested, vortexed, and inoculated using marine broth (ZoBell 2216E) for 48 hours for the molecular identification (Asadi et al. 2017a, Sanders 2012).

Molecular identification: Using an inoculating loop, approximately 1 µL of the bacterial colony was picked off the tube and put into Eppendorf in which 100 µL of double-distilled water was previously poured into each Eppendorf. The sample was vortexed and subjected to five cycles of freezing (-80°C) and thawing (-95°C), and Chelex-100 from BioRad was then used for the bacterial extraction (Silva et al. 2012). 27F universal primers (5’- AGAGTTTGATCM TGGCTCAG-3’) and specific primer 1492R (5’-TACGG YTACCTTGTT ACGACTT-3’) were then used for 16S rRNA PCR amplification. The procedures were followed by sequencing of 16S rRNA gene fragment and BLAST homology analysis using MEGA 5.7 software (Asadi et al. 2017a, Weisburg et al. 1991).

RESULTS AND DISCUSSION

PLS infected coral sample and morphological observation of the bacteria isolates: *P. lutea* is a dominant scleractinian coral in Kondang Merak waters. The coral colonies are widespread across this intertidal shallow reef-flat environment. The corals are often in massive size and form microatoll that grow laterally up to 3 meters in diameter. As response to environmental variabilities, *P. lutea* in this reef-flat often has a distinct colour from yellowish in the
The pigmentation is a response mechanism of illness condition that may be influenced by the elevation of pCO$_2$ close to the polyp tissues through cyanobacterial carbon concentration mechanism that triggers the presence of mucus or cyanobacterial film. It excretes toxins and leads competition for the DO, which in turn cause hypoxia to the coral polyps during the night-time (Yellowlees et al. 2008).

Furthermore, during isolation and purification of the PLS associated bacteria, the colony morphology of the bacteria isolates was observed for their size, shape, elevation and margin. Bacteria cells in the same colony in agar plate were originated from a single mother cell and, therefore, it represents a single and pure isolate. Bacterial colony with P.D1 code was chosen for the molecular identification. The size of the colony is small with irregular shape, raised elevation, and entire margin. The morphological characteristics and appearance of the PLS associated bacterial colonies are presented in Table 1 and Fig. 3 respectively.

Molecular identification: In order to obtain sequence data, the bacterial isolate was identified by sequencing the 16S rRNA genes. The genes are reliable for phylogenetic reconstruction because the genes of the region have slow rates of evolution (Smit et al. 2007). 16S rRNA sequences are also demonstrated to have similar functionalities with distantly related bacterial lineages and therefore 16S rRNA gene provide species-specific signature sequences and has function as a reliable molecular clock (Case et al. 2007).

16S rRNA approach and implementation are useful to explore phenotype trait of the bacteria. It increases the insight on the biochemical, genetic, physiological and molecular properties of coral bacteria (Sabdono et al. 2015). The length of the DNA fragments was visualized using a plot of DNA sequencing or an electropherogram. In order to reduce the uncertainty of the sequences, MEGA 5.7 software was used to remove gaps and noises by editing the forward and reverse of the sequences. A BLAST program was used to compare the data to NCBI (National Center for Biotechnology Information) database and to calculate the statistical significance. The electropherogram of the sequence data and the top 10 Hit BLAST result against NCBI Database are presented in Fig. 4 and Table 2 respectively.

The BLAST program compared the nucleotide of PLS.
associated bacteria to sequence databases of bacteria on NCBI database and calculates the statistical significance. The PLS associated bacteria was identified as Bacillus cereus and closely related to Bacillus pseudomycoides, Bacillus toyonensis and Bacillus thuringensis with 97% similarity.

A study using a multilocus sequence typing analysis suggests that B. cereus is highly diverse and ubiquitously found in marine environments and some of B. cereus bacteria demonstrated niche specificity to some extent (Liu et al. 2017). B. cereus groups have tremendous contributions for removal of persistent organic pollutants and various heavy metals (Chen et al. 2016), production of numerous metabolites and enzymes (Kevany et al. 2009). Yet, some of the group bacteria are opportunistic pathogen and responsible for serious invasive infections (Kotiranta et al. 2000).

B. cereus bacterium isolated from the PLS affected Porites is a large, 3-4 µm, marine strain that is facultative aerobic bacterium and capable of producing endospore, formed when nutrients are scarce. The ability to form biofilms on the coral surfaces and the facultative aerobic characteristic of B. cereus elevate pCO$_2$ leading to oxidative stress and hypoxia to the corals (Majed et al. 2016, Yellowlees et al. 2008). Moreover, the synergistic interaction of elevated temperature and pCO$_2$ is likely to increase the growth of the opportunistic pathogen bacterium B. cereus, leading to the collapse of the coral reef’s ecosystem (Hoegh-Guldberg 2005)

CONCLUSION

Based on the molecular study, it was revealed that the bacterium associated with PLS in Kondang Merak waters was identified as B. cereus. The bacterium was closely related to B. pseudomycoides, B. toyonensis and B. thuringensis with 97% similarity. B. cereus has never been reported to be associated with PLS; therefore, this finding gives a better understanding of the ecology of bacterium that may cause the PLS on Porites coral. B. cereus as opportunistic pathogen in many environments could also be a serious invasive bacterium in P. Lutea coral.

ACKNOWLEDGEMENT

This work was supported by grants from the University of Brawijaya (contract number: 712.13/UN10.C10/PN/2018). The authors acknowledge the laboratory and field work support from Miranti Herdiutami, Arizal Mahendra, Rifqi Novakandi.

REFERENCES

Table 2: The top 10 Hit BLAST result against NCBI database of PLS associated bacteria sequences.

<table>
<thead>
<tr>
<th>NCBI Code</th>
<th>Spesies</th>
<th>Max score</th>
<th>Total score</th>
<th>Query cover</th>
<th>E-value</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR 074540.1</td>
<td>Bacillus cereus</td>
<td>1686</td>
<td>1729</td>
<td>79%</td>
<td>0.0</td>
<td>97%</td>
</tr>
<tr>
<td>NR 113266.1</td>
<td>Bacillus cereus</td>
<td>1686</td>
<td>1729</td>
<td>79%</td>
<td>0.0</td>
<td>97%</td>
</tr>
<tr>
<td>NR 115714.1</td>
<td>Bacillus cereus</td>
<td>1686</td>
<td>1729</td>
<td>79%</td>
<td>0.0</td>
<td>97%</td>
</tr>
<tr>
<td>NR 112630.1</td>
<td>Bacillus cereus</td>
<td>1686</td>
<td>1729</td>
<td>79%</td>
<td>0.0</td>
<td>97%</td>
</tr>
<tr>
<td>NR 114582.1</td>
<td>Bacillus cereus</td>
<td>1686</td>
<td>1729</td>
<td>79%</td>
<td>0.0</td>
<td>97%</td>
</tr>
<tr>
<td>NR 115714.1</td>
<td>Bacillus pseudomyoides</td>
<td>1971</td>
<td>1741</td>
<td>79%</td>
<td>0.0</td>
<td>97%</td>
</tr>
<tr>
<td>NR 113991.1</td>
<td>Bacillus toyonensis</td>
<td>1663</td>
<td>1706</td>
<td>79%</td>
<td>0.0</td>
<td>97%</td>
</tr>
<tr>
<td>NR 114581.1</td>
<td>Bacillus thuringensis</td>
<td>1663</td>
<td>1706</td>
<td>79%</td>
<td>0.0</td>
<td>97%</td>
</tr>
<tr>
<td>NR 041248.1</td>
<td>Bacillus anthracis</td>
<td>1663</td>
<td>1663</td>
<td>68%</td>
<td>0.0</td>
<td>97%</td>
</tr>
</tbody>
</table>

Fig. 4: The sequencing electropherograms of PLS associated bacteria on P. Lutea.