Attachment of Cryptosporidium-Sized Microspheres by Holly Plant Roots

Tao Yuan*, Ping Lu**, Zhaoji Li** and Sen Cheng**

*School of Architectural Intelligence, Jiangsu Vocational Institute of Architectural Technology, Xuzhou, 221116, China
**School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
†Corresponding author: Tao Yuan

ABSTRACT

In order to prevent the outbreak of cryptosporidiosis, understanding the pathogenic parasite Cryptosporidium transport mechanism in the surface water body is critical. Cryptosporidium transport from soil to surrounding water bodies is a main source of pollution and impacted with the attachment by soil and plants. However, the attachment of Cryptosporidium by soil or plants is not clear. In this study, Cryptosporidium attachment by holly plant (Ilex spp.) roots and the impact factors were studied. Results showed that holly plant roots could attach the Cryptosporidium-sized microspheres and low soil pH and high sodium ion intensity can promote the attachment. But high-level Cryptosporidium-sized microspheres lead to the decreased attachment. It concluded that holly roots reduced the migration of Cryptosporidium due to the attachment.

INTRODUCTION

Cryptosporidium is a pathogenic parasite. As little as 10 Cryptosporidium oocysts can cause human disease, cryptosporidiosis. Watery diarrhoea, dehydration, fever, vomiting, physical weakness and abdominal pain are the main clinical manifestation. Infants and people with weak immunity can die due to cryptosporidiosis.

Soil and sediment is the sink of Cryptosporidium. Researches show that soil and sediment contained Cryptosporidium can migrate to surrounding water bodies by runoff (Harter et al. 2000, Xu 2016). However, the migration is controlled by multiple factors, for example, attachment by soil, attachment by plant roots, soil physical and chemical parameters, runoff intensity, runoff duration, etc. The objective of this paper is to study the attachment of Cryptosporidium by soil as well as the plant roots, in order to help first evaluate the Cryptosporidium migration under different soil conditions.

MATERIALS AND METHODS

Experimental materials: According to past research experiences, Cryptosporidium-sized microspheres were used, made of polystyrene (purchased from Polysciences, USA) (Lu et al. 2017a, 2017b, Lu & Amburgey 2016). The number of samples were examined under a fluorescence microscope. The root system of the plant in the experiment was taken from the roots of holly, which is the common landscape greening plant in Xuzhou area, and its roots are denser and have better control on the length and diameter. The roots of each experiment were kept similar to each other to reduce the experimental error.

Experimental methods: Attachment experiments were carried out using 250 mL Erlenmeyer flask and oscillating device. First, the pretreatment of ordinary landscape planted soil was done in the campus by taking 50 g soil, crushing and sieving it through 80 mesh sieve. It was added later into a 250 mL Erlenmeyer flask. The roots of holly was taken into the conical flask and 150 mL of tap water was added. The control parameters included the pH value of the solution (pH=5, 7 and 9), sodium ion strength (0.1 mol/L, 0.2 mol/L, 0.3 mol/L), and Cryptosporidium oocysts initial concentration (10⁴ microspheres/mL, 5 × 10⁴ microspheres/mL, 10⁵ microspheres/mL).

RESULTS AND DISCUSSION

Attachment by soil combined with plant roots: Based on the experimental group (attachment by soil and plant root) and the control group (attachment by soil), the attachment of Cryptosporidium oocysts is shown in Fig. 1. The results showed that the amount desorption of Cryptosporidium oocysts in the experimental group was lower than that in the control group, which indicated that the average number of adsorbed Cryptosporidium-sized microspheres with plant roots is more than that by the soil only under different soil physical and chemical properties. The root system of the
Holly has a significant attachment effect on the Cryptosporidium-sized microspheres. It was because the plant root surface provides a large number of binding sites for the Cryptosporidium-sized microspheres. The Cryptosporidium-sized microspheres were adsorbed on the surface of the plant roots, thereby reducing the migration of Cryptosporidium-sized microspheres from the soil and root system to the surrounding water. The Cryptosporidium-sized microspheres have a particle size of 4-6 µm, and their attachment mechanisms are similar to those of colloid. The colloid research showed that dense vegetation can effectively intercept surface runoff contaminants (Yu et al. 2013).

Effects of soil pH on the attachment: Fig. 2 shows the total desorption of Cryptosporidium-sized microspheres at different pH values. Figs. 2 & 3 show the desorption of Cryptosporidium-sized microspheres varied over time at different pH values. When pH value was 5, the attachment of Cryptosporidium-sized microspheres is obvious, and the number of Cryptosporidium-sized microspheres detected in water samples was little, which was significantly lower than that at the pH value of 7 and 9. Fig. 3 shows that at the beginning of the experiment, the attachment and desorption behaviour of the oocysts were not balanced at the beginning. The DLVO theory suggests that the attachment capacity of colloids is generally poor at high pH because of the increase in electrostatic repulsion and the inhibition of colloidal attachment at high pH values. On the other side, low pH can enhance the attachment of colloids (Zheng 2016). These results agreed that the lower pH value could significantly enhance
ATTACHMENT OF CRYPTOSPORIDIUM-SIZED MICROSPHERES BY HOLLY PLANT ROOTS

The attachment of Cryptosporidium-sized microspheres, which affected the migration of Cryptosporidium-sized microspheres.

Effects of soil Na+ intensity on the attachment: Fig. 4 shows the total desorption of Cryptosporidium-sized microspheres in the experimental group under different sodium ion intensity conditions. Fig. 5 shows the change of the release of Cryptosporidium-sized microspheres in the experimental group with time under different sodium ion intensity. Results showed that the sodium ion strength has a great effect on the attachment and desorption of Cryptosporidium-sized microspheres. With the increase of sodium ion intensity, the desorption number of Cryptosporidium-sized microspheres in water samples decreased significantly. The number of Cryptosporidium-sized microspheres in the wa-

Nature Environment and Pollution Technology • Vol. 18, No. 2, 2019
fluctuates with time, and after 12 hours, the released number of Cryptosporidium-sized microspheres in the experimental group was stable. Meanwhile, the total number of Cryptosporidium-sized microspheres in the water samples increased with the increase of the initial dosage.

CONCLUSION

The attachment of Cryptosporidium-sized microspheres by soil and roots was studied under different soil physical and chemical conditions. The following conclusions were made:

1. Holly roots have a certain attachment effect on Cryptosporidium-sized microspheres, which is to inhibit the migration of Cryptosporidium-sized microspheres from soil to the surrounding water.
2. Low soil pH can promote the attachment by holly root to the Cryptosporidium-sized microspheres.
3. High sodium ion intensity can promote the attachment by holly root to the Cryptosporidium-sized microspheres.
4. Cryptosporidium-sized microspheres release increased with the initial concentration.

Therefore, holly roots, lower soil pH, and high sodium ion intensity can help reduce the migration of Cryptosporidium due to the attachment by soil and holly roots.

ACKNOWLEDGEMENTS

This project was supported by the Foundation of Ministry of Housing and Urban-Rural Development of China (2016-K4-076) the Foundation of Jiangsu Provincial Department of Housing and Urban-Rural Development(2017ZD013) and Provincial University Natural Science Fund of Jiangsu (16KJB610016).

REFERENCES

Xu, Y. 2016. 9. Transport of Cryptosporidium with runoff under different precipitation conditions. China University of Mining and Technology. (in Chinese)